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Figure 1: We study which features determine whether users detect peripherally presented notifications while working. To achieve
this, we leverage data collected across 12 users, working an average of 8 hours in our setup (98 hours in total). (1) Participants
engage in productive tasks using a primary device positioned in front of a projection-based ambient display. (2) Notifications,
represented by 10-second opacity changes to a target information widget (top right), are presented at 5 to 10-minute intervals.
(3) Users respond to a noticeability sampling prompt to indicate whether they detected a notification, thereby serving as our

classification ground truth.

Abstract

Designing notifications in Augmented Reality (AR) that are notice-
able yet unobtrusive is challenging since achieving this balance
heavily depends on the user’s context. However, current AR sys-
tems tend to be context-agnostic and require explicit feedback to
determine whether a user has noticed a notification. This limitation
restricts AR systems from providing timely notifications that are
integrated with users’ activities. To address this challenge, we stud-
ied how sensors can infer users’ detection of notifications while
they work in an office setting. We collected 98 hours of data from
12 users, including their gaze, head position, computer interac-
tions, and engagement levels. Our findings showed that combining
gaze and engagement data most accurately classified noticeability
(AUC = 0.81). Even without engagement data, the accuracy was
still high (AUC = 0.76). Our study also examines time windowing
methods and compares general and personalized models.
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1 Introduction

New ubiquitous computing paradigms, such as Augmented Reality
(AR), can present virtual elements at any time, anywhere, and with
arbitrary appearance and behavior. By situating digital information,
including notifications, within the users’ ambient environments,
AR systems facilitate efficient access to information while users en-
gage in their daily activities within the physical world. For instance,
notifications in AR can keep users informed about scheduled cal-
endar entries, incoming messages, and other relevant events. This
ultimately helps users maintain a productive awareness of their
activities and communications within their operating contexts.
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However, designing effective notifications in such ubiquitous
information environments is challenging. Generally, notifications
should be noticeable but not disruptive to the user’s current tasks.
Since AR notifications can be displayed anywhere within the user’s
environment, their visibility and disruptiveness depend on the
user’s context and overall viewing behavior. For example, a no-
tification displayed in the user’s periphery that subtly animates the
color of a virtual element may be noticed when users are leisurely
sketching, as their gaze occasionally wanders. The same notifica-
tion might go unnoticed when they are engaged in a cognitively
demanding task, such as programming, where their focus is on a dis-
play or AR window. Current AR systems have limited capabilities
to customize notification designs to match contextual needs, partly
because they lack the ability to automatically detect whether users
notice a presented notification (i.e., its noticeability). This means
systems either have to explicitly probe for user feedback to confirm
noticeability (e.g., wait for users to dismiss a message by pressing a
button) or optimize notification designs for maximum noticeability,
both of which can be disruptive. Alternatively, systems may opt
for a more subtle notification design, but that runs the risk of the
notifications going unnoticed entirely. While there is substantial
prior research on optimizing notification designs, including their
placement, presentation, and timing, work on modeling whether a
presented notification has been detected remains limited. We be-
lieve this functionality is crucial for providing timely notifications
that are well-integrated with users’ activities.

As a step towards addressing this challenge, we investigate the
feasibility of using sensors to infer whether users detect peripher-
ally presented notifications as they engage in everyday knowledge
work. The ability to automatically determine the noticeability of
notifications allows them to be acknowledged based on users’ im-
plicit behaviors, rather than requiring an explicit response that
would otherwise interrupt the user’s workflow. Additionally, this
approach serves as a foundation for supporting more intelligent
and adaptive notification displays. For instance, if the system clas-
sifies an important notification as missed, it can re-display the
content with a more visually prominent design. Our approach also
offers the potential for future AR systems to deliver notifications
less obtrusively by gradually increasing the salience of notification
while monitoring for noticeability. Finally, the ability to detect no-
ticeability serves as proof-of-concept and a foundation for future
approaches that predict whether virtual content will be perceived
before it is presented.

To develop a sensor-based approach to infer noticeability, we
first collected data from 12 participants, each working an aver-
age of 8 hours (98 hours of data in total) in front of a projection-
based ambient display situated within a real office setting (Figure 1).
The ambient display consisted of information widgets that were
animated to simulate incoming notifications at randomized 5 to
10-minute intervals. Shortly after each peripherally presented no-
tification, participants were prompted to report whether they de-
tected the additional stimuli. These self-reports serve as our ground
truth for performing noticeability classification. Besides this explicit
stimulus-detection record, we collected data on the participants’
head pose and gaze, their interactions with their primary device
for knowledge work, and self-reports of their perceived level of
engagement with their primary task.
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Based on the data we collected, we demonstrated that it is feasi-
ble to build a classifier that can accurately infer the noticeability
of notifications, achieving an Area Under the Curve (AUC) score
of 0.81 by combining gaze and user-reported engagement metrics.
With the exclusion of engagement measures, a high level of accu-
racy (AUC = 0.76) can still be achieved. Our analysis also revealed
that using features extracted from time windows centered on the
notification enabled the highest classification accuracy, but time
windows preceding and subsequent to the notification also notably
held predictive power. Furthermore, our study showed that a gen-
eral classifier is a good starting point for inferring noticeability.
Lastly, we discovered that using just one to two participants’ data
for training still produced general models of reasonable accuracy.

To the best of our knowledge, this is the first work sensing the
noticeability of notifications based on longitudinally collected data
in a close-to-in-the-wild setting. We conclude our work with a
discussion of the implications of our findings for the design of
AR systems and interfaces, the generalizability of our results, and
directions for future studies, including the expansion of our method
to fully uncontrolled settings. In summary, we contribute:

e A study involving 12 participants who each worked for
an average of 8 hours, interacting with notifications on a
projection-based ambient display. Throughout this study, we
captured data on their gaze, head pose, computer interac-
tions, and engagement levels.

e A machine learning-based analysis demonstrating the fea-
sibility of sensor-based noticeability prediction. Insights
include the effectiveness of various time windowing ap-
proaches, the predictive power of sensor and feature combi-
nations, and the performance of general versus personalized
models in predicting the noticeability of notifications.

2 Related Work
2.1 Mobile and Desktop Notifications

Visual notifications are used pervasively in mobile and desktop
computing environments to proactively provide users with effi-
cient access to information outside their current focus of atten-
tion [38, 47]. They can support users’ situational awareness [68],
but can conversely become a disruptive source of productivity
loss [18], stress [66], and inattention [56] if delivered excessively.
A significant body of literature has therefore studied notifications
in a variety of usage contexts [48, 72] and devices [64, 86].

Prior research on notifications can generally be divided into two
lines of work. There has been persistent interest in identifying when
notifications should be delivered (e.g., [16, 17, 37, 39, 44]). A core con-
sideration relating to this is the interruptibility of the recipient at a
given moment. Early work (e.g., Czerwinski et al. [16, 17]) demon-
strated that interruptibility depends on factors like relevance, tim-
ing, and user engagement. Based on these empirical intuitions, sub-
sequent works have attempted to estimate human interruptibility
by using sensors and learning-based models (e.g., [28, 69, 78, 103]).
In addition to understanding when notifications should be delivered,
significant prior research has investigated how notifications should
be presented to redirect the user’s attention to a target location [64].
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This has involved exploring a variety of notification delivery modal-
ities within various computing environments, including mobile
phones [26], desktops [71], and multi-screen settings [34, 64].

Our work complements prior research by investigating whether a
notification was detected (i.e., its noticeability). Sensing noticeability
enables more implicit interactions, intelligent notification delivery,
and opens the door to less obtrusive notification approaches.

2.2 Notifications beyond 2D screens

In contrast to conventional devices that rely on 2D screens, other
paradigms like AR enable the integration of digital content into the
user’s physical environment in a ubiquitous manner, i.e., anytime,
anywhere, with arbitrary appearance. This entails that notifications
may appear in the user’s visual periphery and vary in visibility
depending on their physical backdrop. Several works have begun
to build toward an understanding of how notifications may be
perceived in these new computing environments. Gutwin et al. [34]
and Mairena et al. [64], for instance, explored how factors like effect
intensity, position, and primary task influenced people’s perception
of different pop-out effects in the periphery. Petford et al. [77]
compared five attention-guiding techniques for directing users’
attention to an out-of-view target in a full-coverage display.

Within augmented and virtual reality (AR/VR), research has
also extensively investigated user preferences for its placement [42,
53, 58, 73, 80, 84, 85], representation [30, 32, 53, 54], and modal-
ity [14, 52, 57]. Building on AR’s ubiquitous nature, these explo-
rations have been undertaken in a variety of contexts, ranging from
information consumption on-the-go (e.g., [58]) to usage during
social interactions (e.g., [84]). While this body of literature has em-
pirically mapped out the factors that determine the appropriate
notification display, such as how its placement influences its notice-
ability and intrusiveness [80], effective computational approaches
to implement these findings are generally lacking. The work of
Chen et al. [11] on predicting opportune moments for notification
delivery and Lindlbauer et al. [62] on adjusting the level of detail of
virtual elements are steps in this direction. However, even if notifica-
tions can be delivered with optimal appearance and timing, current
systems lack the means to automatically verify if they have been
processed, which limits how fluidly they can integrate digital infor-
mation with users’ activities. To address this challenge, Li et al. [61]
introduced an LSTM-based method to predict the noticeability of
dynamic interface elements in a controlled VR setting.

Our work extends this research by exploring sensor-based meth-
ods to detect user notifications in more natural work environments.
Unlike Li et al., who used noticeability data from artificial tasks
such as transcription and arithmetic, our approach is grounded in
longitudinal data collected from a productive office setting.

2.3 Models of Visual Attention

Modeling noticeability, or “perception” according to the model for
situational awareness by Endsley et al. [23, 24], is in many ways
equivalent to modeling visual attention, a topic with a rich tradi-
tion (e.g., comprising of theories like Feature Integration [89] and
Guided Search [95] Theory) within psychology [96] and computer
vision [8]. Generally speaking, there is agreement that visual at-
tention is affected by both external bottom-up factors [50] (e.g.,
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the saliency of a particular feature relative to its background) and
internal top-down factors [98] (e.g., an individual’s memory or ob-
jectives). Computational approaches for visual attention aimed to
formalize bottom-up features through low-level image elements
(e.g., color [63]) and top-down features using contextual informa-
tion [81, 98]. More recent learning-based approaches have further
tried to model both simultaneously [43].

Within HCI research, there has been persistent interest in lever-
aging such existing models as well as extending our understanding
of attention when engaging with various interactive systems [1],
such as web-pages [102] and public displays [19]. Research on un-
derstanding and directing user attention in ubiquitous computing
and immersive environments is most relevant to our work. For ex-
ample, Petford et al. [77] compared several visualization techniques
to direct user attention to out-of-view targets on a projection-based
display. Sitzmann et al. [87] analyzed viewing behavior in virtual
reality. Veas et al. [91] and Grogorick et al. [33] explored various
attention guidance mechanisms. Vortmann and Putze [92] further
explored the use of EEG signals to classify internally and externally
directed attention in a controlled ball and tube alignment task.

To our knowledge, there is no prior work on modeling the no-
ticeability of changes to virtual elements in an ambient information
environment, especially in-the-wild. This knowledge is essential
for creating effective notifications in ubiquitous computing envi-
ronments. Our work addresses this knowledge gap.

2.4 Ambient/ Peripheral / Ubiquitous Displays

In recent decades, considerable research has focused on integrating
computing into daily environments [93]. Within this literature,
several terms have emerged to describe technologies that enable
these blended virtual-physical environments, including ambient [49,
51, 65], peripheral [67] and ubiquitous [5, 51] displays. Research
in this direction has explored many technical approaches, such
as computationally-enabled surface materials (e.g., [2, 100]) and
cognitively-responsive immersive work environments (e.g., [101]).

One popular approach involves enabling interactive applica-
tions by instrumenting environments with camera/projector sys-
tems [9, 55, 82, 97, 101], such as in Brooks’s Intelligent Room [9]
and Raskar et al.’s office of the future [82]. More recent work, like
Roomalive [55] and Worldkit [97], sought to lower the barrier of
entry for developing applications in these computing environments
through open-sourcing system components.

In addition to projection-based augmented reality (AR), see-
through head-mounted displays (HMDs) can also provide digitally
embedded content and computing functions within the environ-
ment [7]. Previous research has demonstrated its potential benefits
in a variety of contexts, including navigation [60], urban plan-
ning [94], and maintenance [36].

Our work introduces an approach to determine the noticeability
of peripheral notifications presented in the users’ workspace as part
of a projection-based ambient display. We envision our work in-
forming the design of the aforementioned computing environments,
agnostic of the specific implementation approach (e.g., projection-
based or HMD). With knowledge of the sensor-based features that
influence noticeability in a workspace environment, interactive
systems can support more fluid interactions with notifications.
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Figure 2: Experimental apparatus. Participants work on a primary task device situated in front of a projection-based ambient
display in an office environment (center). They self-report detecting or missing notifications (an example illustrated in the
right) using an auxiliary data collection device. For head pose and gaze tracking, participants wear a pair of Tobii Pro 2 glasses

an attached HTC Vive Tracker (left).

3 Data collection

We collect data to create an approach that predicts users’ detection
of peripherally-presented notifications while primarily engaged in
everyday knowledge work. We recruited 12 participants to work for
around 8 hours each in an office environment equipped with an ad-
ditional projection-based ambient information display. This yielded
a total of 98 hours of data across all participants. The apparatus,
shown in Figure 2, was designed to be minimally invasive, resem-
bling Raskar et al.’s Office of the Future [82], where information
widgets are embedded into the physical environment. The display
presented 10-second notifications in the user’s periphery every 5 to
10 minutes. After each notification, participants were prompted to
report whether they had detected the notification via an auxiliary
display on their desk. We compiled a comprehensive dataset, includ-
ing the stimuli-detection record, data on head pose, gaze, computer
interactions, and self-reported ratings of engagement levels.

3.1 Apparatus

We allocated a desk in one of our research offices for the study and
equipped it with the following devices for participants to perform
their self-selected primary tasks: an external monitor (ForHelp
15.6 inch), a keyboard, and a mouse. Additionally, we provided
a projection-based ambient display for presenting notifications
(ViewSonic PX701-4K), a small additional display (Dcorn 8 inch) for
prompting participants to report whether they detected a notifica-
tion, and a mouse for participants to input their response. We also
installed a Kinect V2 camera for capturing the study session for
later analysis. Lastly, participants wore a pair of Tobii Pro 2 Glasses
with an attached HTC Vive Tracker for eye and head pose tracking.
For the primary study task, participants could use their own laptop
or one we provided. To maintain a consistent primary display for
all participants, we required them to mirror their devices onto the
ForHelp display for the study.

3.2 Ambient Display

In designing our projection-based ambient display, we drew inspi-
ration from prior visions of ubiquitous displays (e.g., [9, 82]) and
current widget-based interfaces on mobile phones (e.g., [45]). We
were guided by the following specifications: (1) the display should
effectively “disappear” [93] into the physical environment, and (2)
it should enable quick access to information at a glance.

Our final display consisted of widgets for checking the weather,
news headlines, word of the day, air quality, and time, representing
common task-independent ambient applications (e.g., Han et al.
[35], Cho et al. [13]). To increase the relevance of the presented
information to our participants, all widgets are updated in real-time,
with the weather and air quality applications tailored to the study
location. Widgets are mapped to physical surfaces and scaled for
readability. They are placed randomly, while avoiding occlusion
and respecting surface boundaries, with placement limited to re-
gions within the participant’s peripheral vision when seated at the
experimental desk, facing the monitor.

It is important to note that the widgets were intentionally de-
signed to not be relevant to the participants’ primary task. This
decision was driven by privacy concerns, as the apparatus was
deployed in a semi-public space. Additionally, as our focus was on
predicting whether participants can detect additional peripheral
stimuli, we reasoned that presenting generic auxiliary information
was sufficient for our purposes.

Finally, we chose a projection-based ambient display over a head-
mounted display due to the hardware constraints of current head-
sets, such as low resolution and high weight. The projection-based
setup enables participants to perform their task with a familiar
setup, which increases the ecological validity of the collected data.
We hope to replicate our data collection with future headsets, once
they allow participants to perform their primary task comfortably
and efficiently over extended periods of time.
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3.3 Office Environment

The office environment in which our apparatus was situated was
simultaneously occupied by 3 to 4 other people who typically work
in this space. Their daily activities usually involved some form of
knowledge work, with some collaborating and engaging in dis-
cussions. The office also hosted a coffee machine frequented by
members of the affiliated research team, serving as a daily gath-
ering space. Occupants and visitors of the space were instructed
to avoid physically interfering with the ambient display, but they
were not told to avoid interaction with the participant entirely.
We intentionally situated our apparatus in this comparatively less
controlled environment to enable more ecologically valid working
conditions, which included ambient sounds typical of office settings
and unexpected bystander interruptions.

3.4 Notifications

To collect data for predicting noticeability, we introduced notifi-
cations by animating individual widgets on our projection-based
display. Every 5 to 10 minutes, the system randomly chooses one
widget as the notification target (Figure 4). We selected this time
interval to balance collecting enough samples for machine learning
and delivering notifications at an ecologically valid frequency (an
average of 63.5 notifications per day [79]), i.e., infrequently enough
so that participants cannot anticipate when the next notification
will occur and focus on their main task.

We animated widgets by adjusting their opacity to smoothly cre-
ate a subtle, oscillating fade. Each notification involved animating a
selected widget for 10 seconds, roughly equivalent to 2-3 repetitions
of a phone ringtone sequence. For our study, we included both a
slow and a fast opacity change-based notification, drawing inspira-
tion from Gluck et al.’s work [31]. The slow notification faded in
and out with a 2.5-second period, while the fast notification had
a 1-second period as a starting point. We adjusted these periods
during the study to accommodate individual differences in atten-
tion, aiming to achieve an approximate 50% detection rate. These
adjustments were intended to strike a balance between making
notifications salient enough to be reliably detected and avoiding an
overwhelming or intrusive level of stimuli.

We chose our opacity change-based notification approach after
exploring alternative notification mechanisms, such as motion and
flag-based animations, in pilot studies. During these initial explo-
rations, we found that single-state change-based notifications, like
introducing a flag, were too subtle and users missed them most of
the time. Compared to other continuous state-change notifications,
we ultimately selected the opacity-based notification for its aes-
thetic appeal and subtlety. Finally, we settled on the 2.5-second and
1-second periods for the slow and fast opacity change-based notifi-
cations, respectively, via experimenting with different oscillation
speeds in additional pilots.

3.5 Noticeability Sampling

To collect a ground truth for noticeability, we employed a cued re-
call paradigm, retrospectively prompting participants to self-report
whether they noticed a previously presented notification. This ap-
proach is notably different from instructing participants to respond
immediately. We chose this paradigm after observing in our pilots
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Figure 3: Noticeability sampling prompt and reporting inter-
face shown on the additional display. Participants retrospec-
tively reported whether they detected the notification, their
level of engagement, the degree to which the notification
distracted them, and their certainty in their detection.

that requiring immediate responses introduced a significant amount
of noise to the data. Specifically, it was challenging to distinguish
signals arising from participants detecting the notification from
those associated with confirming that they noticed them, i.e., reach-
ing over to our data collection device to indicate their response.
Disentangling the moment of detection from when participants
needed to react to a notification resolved this challenge.

Prompts asking participants to recall detecting a notification
were shown after a 30- to 60-second delay on a small screen to the
left of their monitor (Figure 3), which flashed blue. Positioned near
their mid-peripheral vision, the prompt aimed to be more noticeable
than the notifications without causing annoyance. We used an
additional device to ensure that participants could easily access
the recall prompt. In addition to asking whether they detected the
notification, we used a 7-point Likert scale to assess their current
level of engagement with their primary task. We also assessed their
level of certainty in their detection and the extent to which the
presented notification was distracting.

The flow of the notification and sampling procedure is presented
in Figure 4. To summarize, 10-second notifications were presented at
randomized 5 to 10-minute intervals. Notifications were followed by
a 30-second to 1-minute buffer, after which a prompt was presented
to determine whether the participant had detected the notification.
The system advances to the next notification (i.e., starts the timer
for the next interval) either upon receiving a user response or if
left unanswered for over a minute. We henceforth refer to each
notification-prompt pair as one trial. In each trial, we denote the
start of a notification as t = 0s. Notifications are continuously
displayed between ¢t = 0 and t = 10s.

3.6 Implementation

We implemented the ambient display and noticeability sampling
prompt in Unity3D. All widgets were updated with real-time infor-
mation from the web using JSON APIs, including the News API for
headlines, the Open Weather API for weather-related information,
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Figure 4: Procedure. 10-second notifications are presented randomly at 5 to 10-minute intervals. After each notification, there
is a 30 to 60-second delay, after which participants are retrospectively prompted to report whether they detected notification.
The system proceeds to the next notification upon a user response or if it is left unanswered for over a minute. One trial refers

to a notification-prompt pair.

and the Words API for words and definitions. To map the widget
display to the surrounding physical environment, we pre-calibrated
the projector to the environment using an additional Kinect V2
sensor and the RoomAlive Toolkit [55]. The ambient display and
notification prompt application was deployed on an Alienware Au-
rora R12 desktop computer (Windows 10, Intel Core i9 119000KF,
NVIDIA GeForce RTX 3090 24GB, 32GB RAM).

3.7 Head Pose and Gaze Tracking

To perform head pose and gaze tracking, we attached an HTC Vive
Tracker to a pair of Tobii Pro 2 Glasses. We implemented a separate
Unity3D application for logging the HTC Vive Tracker position
and orientation (sampled at 30Hz). We adapted De Tommaso and
Wykowska’s Python controller [21] for logging the relevant gaze
data (sampled at 50Hz). We manually calibrated the coordinate
systems of the Vive Tracker and Tobii Glasses. To calibrate the head
pose and gaze with the ambient display, we performed a three-point
calibration before the start of each study session. Both applications
were deployed on the same desktop computer as the ambient display
and notification prompt. We connected and synchronized all three
applications via a web socket (e.g., starting and stopping logging).

3.8 Monitoring Tool

To collect computer interaction data, we adapted the monitoring
tool developed by Meyer et al. [70]. We tracked participant’s mouse
and keyboard interactions, as well as the active window. For mouse
interactions, we recorded clicks (button) and movement (distance
moved in pixels), along with corresponding timestamps. Regarding
the keyboard, we logged keystroke types (normal, navigating, or
delete key) with timestamps. For the active window, we captured
the name of the active process and its activity category (e.g., coding,
emailing, writing documents), along with the timestamp of user
window switches. To categorize activities, we followed the method
described by Ziiger et al. [103]. For privacy purposes, we did not
record participants’ specific key strokes and the active window title.
The monitoring tool was deployed on the device participants used
for their primary task during the study, and deleted after the study.
We connected the monitoring tool with the ambient display and
notification sampling application through a web socket.

3.9 Procedure

At the beginning of the study, we explained the purpose and process
of the study, with detailed information about the signals we would
collect. The participants then signed a consent form and completed
a demographic questionnaire inquiring about their age, gender,
experience with spatially immersive interfaces, daily time spent in
front of a display, and notification engagement practices.

Subsequently, participants were guided to their assigned work
desk, where the researcher showed them the apparatus, introduced
the sensors and the data we collected in more detail, and demon-
strated the study procedure with a sped-up version of the notifica-
tion response task. Following, the researcher assisted participants
in connecting their personal devices or our provided computers to
the external monitor on the desk. They also helped install and set
up the monitoring tool, had the participants put on the eye-tracking
glasses, started the ambient display and notification sampling appli-
cation, and performed calibration between all the sensors. Finally,
after confirming that all system components were correctly set up
and logging data as required, we instructed participants to begin
their work. We told participants to mainly do productive work on
their primary device; however, they are also free to take breaks at
any time. We emphasized that they should concentrate on their
primary device and refrain from actively monitoring the ambient
display, as well as avoid interacting with auxiliary devices like
smartphones and tablets. Beyond these considerations, we inten-
tionally did not specify any constraints around what task the par-
ticipant should engage in, to encourage natural, everyday working
behaviors. Upon receiving a notification, participants are instructed
to simply continue with their work while remaining cognizant of
the notification to report when prompted.

A full session of the study lasted approximately 8 hours, with
start and finish times tailored to each participant’s preferences and
work routine. Most participants opted for a break every one to
two hours, returning for multiple sessions to complete the study.
Participants were compensated with a $150 gift card. The study
was approved by the local IRB.

3.10 Participants

We recruited 12 participants through personal contacts and univer-
sity communication channels. All were graduate or undergraduate



Sensing Noticeability in Ambient Information Environments

Total per Participant
Notifications 740 occurrences 62 occurrences (7)

Gaze & head pose 90.6 hours 7.6 hours (1.2)
Computer input 94.1 hours 7.8 hours (1.1)
Computer activity 51.6 hours 4.3 hours (3.8)

Table 1: Dataset after pre-processing. Per participant metrics
are reported as M (SD).

students with an average age of 25 years (SD = 3). 7 were female
and 5 were male. 10 participants were researchers from a range of
disciplines, including education, design, mechanical engineering,
computational fabrication, and human-computer interaction. We fo-
cused on researchers and students as one community of knowledge
workers because of the diversity of their tasks, extensive computer
usage in their work, and availability [4]. Our participants reported
spending an average of 8 hours (SD = 2) in front of a computing dis-
play on a daily basis. On a 1 (none) to 7 (expert) scale, participants
reported a relatively low amount of experience with spatially im-
mersive interfaces (M = 2.5, SD = 1.4). This was expected as such
interfaces are currently still far from ubiquitous. Participants also
reported often checking for notifications while working, M = 4.8
(SD = 0.9), on a scale from 1 (never) to 7 (always). 2 out of 12 par-
ticipants used their own device connected to the primary display,
5 participants opted to use a laptop we provided, and 5 set up a
Remote Desktop connection to their own device via our laptop.

3.11 Data Summary

We collected a total of 98 hours of data from 12 participants (M = 8
hours per participant, SD = 1). Participants spent the majority of
their time browsing the internet for work-related purposes (52%),
followed by reading and editing documents and other artifacts
(26%), miscellaneous tasks (5%), and planning-related tasks (3.6%;
e.g., editing calendar entries). Within this time, participants were
collectively presented with 793 notifications (M = 66 per partici-
pant, SD = 7). They responded to 87% (SD = 11%) of the noticeabil-
ity sampling prompts they received. Based on our observations, the
remaining prompts were missed entirely. We speculate this may
have occurred because participants were either highly focused on
their primary task, leading to "tunnel vision" [20], or leaning closer
to their display, making the notifications and prompt appear further
in their peripheral vision. On average, participants detected 49%
(SD = 16%) of the notifications.

4 Features and Data Processing

Prior to the main analysis, we performed several pre-processing
steps that are summarized as follows.

4.1 Basic Pre-processing

We initiated our pre-processing by manually inspecting the data.
Figure 4 illustrates the notion of a trial within the context of our
data collection. We examined the Kinect-captured video of the
participants’ activities in the 70-second interval centered around
each notification (i.e., including the 10-second notification display
and the 30 seconds before and after), the computer interaction (i.e.,
input and activity), gaze, and head pose data logs.
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Since we were primarily interested in predicting whether users
can detect peripherally-presented notifications while engaged in
everyday work, we excluded trials where participants were not
focused on their primary device. This included scenarios like the
participant engaging in conversation with others in the office (21 oc-
currences) or using their personal mobile devices (32 occurrences).
From our initial analysis, we also encountered issues with recording
computer input and activity data. First, when participants estab-
lished a Remote Desktop connection, the recorded active process
was the Remote Desktop client, rather than their device’s actual
active process. Consequently, we excluded the computer activity
data collected from these five participants. Secondly, for a specific
set of trials, an oversight by the experimenter resulted in the moni-
toring tool not being initiated. Errors in gaze and pose data were
primarily attributed to manual miscalibrations.

Out of 793 notifications (i.e., trials), we excluded 53 trials entirely,
along with computer input data from 8 trials, computer activity
data from 362 trials (5 participants), and gaze and head pose data
from 42 trials. One participant misunderstood the instructions and
used the certainty Likert scale to indicate whether they detected
a notification. For them, a high score indicated that they noticed
the notification and a low score indicated otherwise. We, therefore,
determined their noticeability labels by dividing their Likert scale
into two states (1234 for missed and 567 for noticed).

We provide a summary of the dataset after pre-processing in
Table 1. Our final dataset comprised 740 notifications. In this pre-
processed dataset, participants responded to 88% (SD = 10%) of
the noticeability sampling prompts they received, detecting 46%
(SD = 15%) of the notifications.

4.2 Feature Extraction

After pre-processing the data, we extracted features from the raw
sensor logs to build the noticeability classifier. We identified features
previously linked to cognitive and attentional states, as well as
interruptibility. This includes metrics characterizing participants’
gaze, head pose, computer input and activity, and perceived level of
engagement. Table 2 provides a summary of the extracted features.

4.2.1 Gaze and head pose. The Tobii Pro 2 glasses and Vive Tracker
continuously capture participants’ head position, orientation, and
gaze direction. By combining these data with the known positions
of information widgets in the environment, we estimated the visi-
bility of notifications in relation to the participants’ visual attention
using two metrics: a head-to-widget angle and a gaze-to-widget
angle. The head-to-widget and gaze-to-widget angles refer to the
angles between the normalized direction vector from the partici-
pant’s head position to the notification and the directions of the
participant’s head and gaze, respectively. We also characterize the
general movements of the head and gaze of the participants with
their head angular velocity, head positional velocity, gaze angle [11],
and gaze-shift speed [11].

4.2.2  Computer input and activity. Using the computer interac-
tion and activity data, we compute a feature set similar to Ziiger
et al. [103]. We extracted keystrokes and mouse events (i.e., mouse
clicks, mouse movement distance) to approximate the user’s level of
interaction with their device. We also extracted application window
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Feature type Feature Reference
Gaze (widget) gaze-to-widget angle (min, max, mean, std)
Gaze (general) gaze angle (min, max, mean, std), gaze shift speed [6, 11, 22, 25]

(min, max, mean, std)

Head pose (widget) head-to-widget angle (min, max, mean, std)
Head pose (general) head positional velocity (min, max, mean, std), head
angular velocity (min, max, mean, std)

Computer input  keystrokes (sum), mouse clicks (sum), mouse move-

ment distance (sum)

[3, 40, 41, 46, 103]

Computer activity ~window focus duration (max), window switches
(sum), activity focus duration (max), activity switches

(sum)

Engagement engagement

[11, 29, 59, 76, 103]

Table 2: Extracted features are grouped by type, accompanied by references to prior work where they have been defined or used.
Gaze (widget) and head pose (widget) metrics define their respective relative spatial relationships to the notification, while gaze
(general) and head pose (general) metrics characterize their general behavior. The bracketed and colored values additionally
indicate the statistics used to characterize each feature in the time windows we analyzed.

features to measure engagement in windows and specific activity
categories, focus duration (i.e., in window or in activity), as well
as window and activity switching events (i.e., window switches,
activity switches). We follow Ziiger et al.’s semi-automatic method-
ology [103] for obtaining categories, which maps windows and
process names to categories like coding and email.

4.2.3 Engagement. Our noticeability sampling prompt included
Likert ratings for participants to report their level of engagement
with their primary task, their level of certainty in their detection,
and the extent to which they perceived the notification as distract-
ing. Since prior research has shown that user engagement influences
their receptiveness to notifications (e.g., [11]), we include it as an
additional feature in our analysis. We did not include participants’
reports of certainty and distraction as features because these reflect
their perception of the notification instead of their state at the time
the notification is presented.

4.3 Time Windows

To further prepare our data for noticeability classification, we trans-
formed our continuous time-series data streams into discrete input
variables. This involved computing summary metrics for each of
our extracted features within different time windows (e.g., sum,
mean, max, min, standard deviation). We focused on analyzing time
windows closer to the notification display (i.e., within 30 seconds)
because we expected significant fluctuations in participants’ at-
tentional states and activities throughout the study [4]. The time
windows we examined include: t = 0s to 10s (i.e., during the no-
tification display), t = —10s to 20s (i.e., a 30-second time window
centered on the notification display), t = —30s to 40s (i.e., a 70-
second time window centered on the notification display), t = —10s
to Os (i.e., the 10-second time window prior the notification display),
t = 10s to 20s (i.e., the 10-second time window following the no-
tification display), t = —30s to Os (i.e., the 30-second time window
prior the notification display), and ¢ = 10s to 40s (i.e., the 30-second
time window following the notification display).

5 Sensing Noticeability

To assess the predictive capabilities of our data on participants’ de-
tection of peripherally-presented notifications, we applied machine
learning on pre-processed features, with participants’ self-reports
serving as the ground truth. In the following, we compare the per-
formance of different classification algorithms, explore feature ex-
traction from continuous data streams with varying time windows,
and investigate different feature combinations. Additionally, we
assess the scalability of our approach and compare the performance
of a personalized model to a general classifier.

5.1 Evaluation Method & Metrics

In all our experiments, unless otherwise specified (e.g., Section 5.6),
we adopted a leave-one-participant-out cross-validation method
(LOOCV) to evaluate different approaches. One participant’s data
was used as test data, while the data from the remaining 11 partici-
pants were used as training data. The results were averaged over 10
runs. We quantify performance using standard machine learning
metrics, including accuracy, recall, precision, F1-score, and the area
under the receiver operating characteristic curve (AUC). For the
sake of conciseness, we focus on reporting the AUC. Additional
metrics and experiments are detailed in Appendix A.

5.2 Overview of Results

Overall, our results suggest that inferring whether participants de-
tected a peripheral notification with sensor data is feasible. Specifi-
cally, a gradient boosting pipeline achieved an AUC of 0.78 using all
available sensor features. By refining our time windowing approach
and feature selection, we achieved a higher AUC of 0.81.

Through our analysis, we observed that users’ gaze relative to the
notification display and their engagement at the time a peripheral
notification is shown were the most informative for predicting
noticeability. Additionally, while a general model may not fully
capture all individual behavioral differences, it still demonstrates
reasonable performance, even when trained on limited user data.
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Figure 5: Comparison of classification approaches.

5.3 Classification Approaches

We initially evaluated several traditional machine learning classi-
fiers, as cited in the interruptibility and notification literature [11,
90]. These classifiers include a random forest classifier, gradient
boosting classifier, AdaBoost classifier, Naive Bayes classifier, Sup-
port Vector Machine (SVM), neural network (NN), and logistic
regression. All classifiers were implemented using scikit-learn [75].

Next, given that approaches based on Long Short-term Memory
(LSTM) neural networks have demonstrated potential in time-series
classification tasks such as interruptibility prediction [11] and gaze
pattern recognition [88], we decided to investigate their classifica-
tion performance as well. We implemented a LSTM model using
PyTorch [74]. As input, we experimented with features extracted
from consecutive 10s and 30s time windows.

Lastly, we evaluated two baseline models: a majority classifier
and an optimal threshold classifier. The majority classifier always
predicts the more prevalent class, which in this case is that the
participant missed the notification. Our optimal threshold classifier
predicts whether a notification has been detected or missed based on
a single variable. Through experiments, we found that thresholding
using the minimum gaze angle extracted from the time window
t = 0s to t = 10s yielded the best performance.

Details on the design and tuning of the aforementioned models
are provided in Appendix B.

5.3.1 Results. Figure 5 compares the classification approaches we
evaluated. Overall, the gradient boosting classifier achieved the
highest performance, with an AUC of 0.78. Excluding the major-
ity classifier, all other approaches, including our naive unimodal
thresholding baseline, also demonstrated reasonable performance,
with AUCs of at least 0.71. These results not only suggest that it
may be feasible to predict whether participants will detect a
peripheral notification in AR while engaged in knowledge
work, but also indicate that the collected sensor data contains
features with high predictive power that do not necessarily
require a complex model to learn.

For the remainder of the paper, we present results using the
gradient boosting model, as it achieved comparatively better per-
formance without requiring any feature pre-selection.
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Figure 6: Comparison of models implemented using features
extracted from different time windows.

5.4 Time Windows

To investigate the predictive power of our features extracted from
different time windows, we trained separate gradient boosting clas-
sifiers using each window feature set (i.e., seven models, one for
each time window listed in Section 4.3). Additionally, we examined
the performance of the model when using a combination of features
extracted from 10s and 30s time window sequences.

5.4.1 Results. The prediction performance using different time
windows is presented in Figure 6. Overall, models using features
from a time window that overlapped with the notification gener-
ally performed best, with the most accurate achieving a 0.78 AUC
(i.e., using features from t = —10s to 20s). This suggests that users’
activities near the time a peripheral notification is presented
are the most informative for predicting noticeability. How-
ever, features from time windows capturing activities before or
after a notification also demonstrated reasonable performance. For
example, signals extracted from 10-second windows before or after
anotification achieved AUCs of 0.64 and 0.68, respectively. This sug-
gests that behaviors preceding the notification window may
serve as predictors of participants’ impending notification
detection. Similarly, the predictive signal conveyed by features
from the time window following the notification indicates that re-
ceiving the notification may have influenced the participants’
subsequent behaviors.

Lastly, our results show that using a 10s window sequence (AUC
= 0.79) instead of a single 10- (AUC = 0.77) or 30-second window
(AUC = 0.78) provides a slight boost in performance. Though the
difference is comparatively minor, this nonetheless suggests that ex-
plicitly providing the model with inputs representing participants’
interactions and behaviors before and after the notification may
beneficially enhance contextualization.

5.5 Feature Importance

To explore which combinations of features best predicted noticeabil-
ity, we implemented gradient boosting classifiers using data from
each sensor individually and combinations thereof. We utilized fea-
tures extracted from 10s window sequences, guided by the results
in Section 5.4. In addition, we quantify feature importance using
Gini impurity from scikit-learn [75]. This measure captures each
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Figure 7: Feature Importance. (a) Comparison of models implemented using different feature combinations. (b) Gini impurity.

Subscripts w and g denote widget and general.
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Figure 8: ROC curves. (a) Cross-validation results obtained by leaving different numbers of users out. (b) Results from leave-
one-participant-out cross-validation using a general model. (c) Comparison of a general versus an individual model.

feature’s contribution in a gradient boosting classifier to influence
the classification outcome. We calculated Gini impurity using a
gradient boosting classifier constructed with all features extracted
from the 10s window sequence.

5.5.1 Results. Figure 7a presents the prediction results using differ-
ent feature combinations. Figure 7b presents the computed feature
importances. Overall, the results suggest that gaze relative to the
notification display is the strongest predictor of noticeability,
achieving the highest AUC (0.75) and emerging as the most impor-
tant feature (58%) by a significant margin. Engagement emerged
as the second most predictive feature, achieving an AUC of 0.69
and Gini impurity of 18.8%. Combining the aforementioned gaze
and engagement features yielded our best-performing model,
achieving an AUC of 0.81. However, combining additional features
did not improve performance; in some cases, it even resulted in
decreased prediction accuracy. This suggests that not all sensors
were complementary, and introducing certain sensors may
instead add noise, adversely impacting performance.
Excluding gaze-related metrics, features characterizing partici-
pants’ head pose relative to the notification display still achieved
reasonable above-chance performance (AUC = 0.63), particularly
when combined with engagement (AUC = 0.73). On the other hand,

computer input and activity were the least important features, with
Gini impurity scores of 2.9% and 1.0%, respectively. Using a classi-
fier based solely on computer input and activity similarly yielded
the lowest AUC scores, with 0.53 and 0.51, respectively.

5.6 Scalability

We assessed the scalability of our gradient boosting classifier to
new users by conducting a leave-1, 2, 4, 6, 8, 10, 11-participants-out
cross-validation. For exploration, we also performed a leave-0-
participants-out cross-validation.

5.6.1 Results. Figure 8a presents the results of our experiments
on scalability. Leaving out data from 10 participants resulted in
an AUC of 0.68, compared to 0.78 when excluding one user. This
indicates that while the model benefits from training on data
from more participants, it may still generalize well enough
to provide reasonable performance even with limited user
data. Our leave-0-participants-out cross validation resulted in an
AUC of 0.89, suggesting some degree of ambiguity in the data, as
the model could not perfectly match the data of users even when
they are included in the training set.
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5.7 Personalization

To examine the extent to which a general model may account for
individual differences, we analyzed individual ROC plots generated
during leave-one-participant-out cross-validation. We also investi-
gated whether access to individual data could enhance model per-
formance by training personalized models for each participant. For
this, we used the same gradient boosting pipeline to generate learn-
ing curves for each individual through shuffle split cross-validation
(100 splits, with a test size of 20% of the available samples).

5.7.1 Results. As shown in Figure 8b, while our classifier achieves
reasonable accuracy on average, its performance varies significantly
across participants. This suggests that a general model may not
effectively capture all individual behavioral differences.

Figure 8c shows ROC curves of a general versus individual model.
On average, individual classifiers achieved a lower AUC (0.74)
compared to the general models. However, on a participant-by-
participant basis, individual models sometimes outperformed the
general model, as evidenced by overlaps in the learning curves.
This suggests that while personalized models did not significantly
improve overall performance, accounting for individual differences
may still be beneficial. An important caveat to consider, however, is
that the general models were trained on over 10 times the amount
of data available to the individualized models (i.e., data from 11
participants compared to only 80% of one participant’s data), which
may have biased these results.

6 Discussion

In this work, we investigated the feasibility of predicting people’s
detection of peripherally presented notifications using gaze, head
pose, computer activity, and self-reported levels of engagement.
To this end, we collected and performed a machine learning-based
analysis of data on interactions with notifications across 12 partic-
ipants. Based on our results, we discuss implications for ambient
interfaces and opportunities for future work.

6.1 Usage

In general, a classifier for the noticeability of interface elements
supports several novel interactive functionalities. First, it enables
acknowledgment of notifications based on implicit behaviors rather
than explicit feedback, thus reducing unnecessary interruptions to
the user’s workflow. Second, it provides the system with knowledge
of whether the user should be prompted again (i.e., in cases where
the notification has been classified as missed). Finally, it opens the
door to less obtrusive notification delivery by gradually increasing
the visual saliency of a notification while monitoring whether it
is noticed. Specifically, with our current approach, we may gradu-
ally increase the frequency at which a virtual element fades while
checking the sensor signals at 10-second intervals to determine if
it has been detected. This allows notifications to be presented in a
just-noticeable manner.

A classifier that can predict a user’s susceptibility to a notifica-
tion (i.e., whether they will notice an upcoming notification) offers
further support for the intelligent delivery of notifications. Based
on predictions of whether a user will notice a notification, the sys-
tem may adjust the saliency of its presentation to strike a balance
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between being noticeable and not overly obtrusive. If the classifier
determines that a user is unlikely to notice an upcoming notifica-
tion, it can be presented in a more salient manner (e.g., increased
oscillation speed for our transparency adjustment effect). In the
converse case, the presentation can be reduced in saliency.

6.2 Implications

Our current results demonstrate that constructing a classification-
based approach for noticeability using sensors is feasible. While our
sensors provide some signals for predicting future noticeability, this
task proves to be more challenging in comparison. Our learning-
based analysis further provides the following insights for enabling
the use of sensor-based approaches to classify noticeability:

First, since features extracted from the 10s time window sur-
rounding the notification were most predictive, future systems
should prioritize capturing user behavior signals overlapping
with the notification for optimal noticeability detection.

Second, based on our ablation studies and analyses of feature
importance, future systems should focus on capturing the user’s
gaze or head pose relative to the notification. In contrast, the
user’s interactions with their devices may be less valuable as a
signal to capture, as they offer less predictive power.

Our results further suggest that understanding the user’s level
of engagement with their primary task will benefit notice-
ability prediction; however, capturing this information may pose
additional challenges. While the metrics like gaze, head pose, and in-
put can be collected directly from off-the-shelf sensors if the users’
workspace and devices are appropriately instrumented, engage-
ment is a property of the user’s cognitive state and can currently
only be self-reported or imperfectly inferred from proxy metrics
like EEG [15] and video data [83]. That said, while incorporating en-
gagement achieved the best performance (AUC = 0.81), excluding
the engagement feature still enables the development of reasonably
performing models (i.e., achieving an AUC of 0.76 using gaze alone).
Notably, an AUC of 0.76 is comparable to performance achieved by
prior work on modeling noticeability [61] and interruptibility [103],
some of which were conducted in more controlled contexts.

The combination of sensors can ultimately be tailored to specific
usage requirements. For instance, our gaze-based model may be suf-
ficient for lower-stakes scenarios where classification errors have
minimal consequences for the user experience, such as displaying a
non-critical weather alert. In this example, if the notification is set
to be dismissed implicitly based on the model classification result, a
false positive prediction (e.g., incorrectly identified as noticed) may
be acceptable, as the information does not require urgent attention.
We believe that it is, in fact, in these scenarios where subtlety is
the objective that our approach may be most applicable. In con-
trast, in higher-stakes scenarios (e.g., a reminder for an interview),
notifications should arguably be optimized for maximum notice-
ability, which is how they are effectively designed now. That said,
awareness of noticeability can still be valuable in these settings,
highlighting future opportunities to improve our models. Our ap-
proach lays the groundwork for more complex and, hopefully, more
accurate models that include measures such as engagement.

Lastly, our results suggest that constructing a general model
offers reasonable performance. Therefore, while a general model
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is not robust to individual differences, systems can likely begin with
a model constructed from data captured from multiple users rather
than relying solely on personalized data collection.

Our results offer practical insights for both projection- and HMD-
based AR systems. For projection-based displays, our results suggest
that additional instrumentation for gaze and head-pose tracking is
needed to facilitate noticeability sensing. Our apparatus was also de-
signed to mimic the characteristics of a lightweight HMD, free from
the current device and ergonomic constraints (e.g., limited field of
view) and extended with additional sensing modalities (e.g., gaze).
Our notifications effectively represent world-fixed AR elements,
a common placement pattern where the information is fixed the
physical environment and displayed in situ [27, 62, 85]. Current
commercial HMDs (e.g., Apple Vision Pro) can similarly character-
ize a user’s gaze and head pose relative to world-fixed AR elements,
and we therefore anticipate that our findings may translate directly.
Additionally, though the sensors on current HMDs capture similar
information (e.g., gaze, head pose), they are not identical to the
ones used in our apparatus, as discussed below.

6.3 Limitations and Future Work

Our current work is subject to several limitations, which we de-
scribe in the following.

6.3.1 Towards “In-the-Wild” conditions. The first concern is whether
the study conditions were sufficiently realistic. We conducted our
study in an office where the usual occupants worked alongside
the participants and engaged in their typical activities, provided
they did not physically interfere with the ambient display. While
this setup enabled conditions closer to real working environments,
such as prompting cases of bystander interference, it may have
nonetheless precluded a fully “in-the-wild” experience. For instance,
although other office occupants were not explicitly instructed to
avoid interacting with the study participants, they may have felt
disinclined to do so due to concerns about interfering with the
research. Additionally, the study required participants to work in
a foreign environment under consistent monitoring, which may
have also inhibited their natural work behaviors. We believe the
extensive eight-hour study period we used would have allowed
participants to acclimate; however, future iterations could always
consider extending the deployment duration. To addressing these
challenges, we are currently modularizing the setup to support
deployment participants’ own productivity environments.

6.3.2 Generalizability across environments, tasks, and displays. We
conducted our study with participants working in a specific of-
fice. This precludes many other work settings. In addition to an
office setting, for example, knowledge workers typically work in
libraries, coffee shops, and other public spaces. Even if we were
to constrain the target environment to an office, offices differ in
furniture arrangement and size.

Besides differences in environments, while our participants per-
formed a variety of canonical knowledge work tasks, such as brows-
ing and reading documents, these tasks are by no means exhaustive.
Furthermore, beyond knowledge work, AR has also been applied to
a variety of usage scenarios, such as social settings (e.g., [10]) and
on-the-go information consumption (e.g., [58]).
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Lastly, in AR settings, virtual interface elements can also vary sig-
nificantly in their presentation. In addition to the surface-embedded
method of presentation we use, virtual elements can be presented
in mid-air [12] or anchored to the user’s field of view [62].

Ultimately, additional research is required to validate its rele-
vance across a broader range of environments, tasks, and displays.

6.3.3 Notification timing. Our study randomly introduces notifi-
cations at 5 to 10-minute intervals. This decision was intended
to strike a balance between collecting sufficient samples for per-
forming learning-based analysis and presenting notifications at an
ecologically valid frequency. While we somewhat perturbed the
interval between notifications, the periodic delivery of notifica-
tions may not be representative of real life, where notifications
can arrive in bursts or not at all for extended durations. This also
raises concerns about participants’ ability to anticipate notification
arrivals in advance. From our observations and informal conver-
sations with participants, we did not find that participants were
actively expecting notifications; nonetheless, for greater ecological
validity, future iterations can consider adopting more varied and
naturalistic patterns of notification delivery.

6.3.4  Projection-based approach. In our current apparatus, we used
a projection-based approach to circumvent the limitations of cur-
rent head-mounted AR displays, such as their weight and limited
field of view. We captured signals similar to those available on
HMDs (e.g., gaze, head pose) under quasi-ideal tracking conditions.
Our decisions were guided by the goal of ensuring that our findings
would remain relevant not only to present technologies but also
to future advancements, offering more seamless and ubiquitous
digital information displays. That said, this raises questions about
whether our findings can directly inform the design of current
head-mounted displays, where the sensors used may differ and
suffer from inaccuracies. Therefore, we see value in replicating the
experiment with current and future headsets, particularly in more
challenging environments that introduce sensing difficulties.

6.3.5 Single device vs multi device. In our study, we focused on
contexts where participants were fully engaged in productive work
on a single desktop device. However, current users engage in a
significantly wider variety of tasks within multi-device ecologies
that include diverse screen form factors and arrangements [99]. Ex-
tending the considered activities and screen configurations within
our model, therefore, serves as a valuable direction for future work.

6.3.6  Recall vs immediate response. Our study might also be con-
strained by the selection of notifications and the procedures used for
their presentation. First and foremost, in our study, we assessed the
noticeability of 10-second animations using a cued recall approach.
The choice of a 10-second duration was justified by its equivalence
to receiving two to three phone ringtones. We specifically chose a
cued recall paradigm after pilot testing revealed that asking for an
immediate response made it challenging to differentiate between
signals arising from detecting the notification and participants’ re-
sponses. This approach, however, suffers from several limitations.
First, while we could determine if participants detected a notifica-
tion within the 10-second window, this method prevented us from
pinpointing the exact moment of detection. Second, this approach
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required participants to keep the notification in mind until the re-
call prompt, which may have influenced their subsequent behavior
and involved a memory bias. To address this, future studies may
benefit from employing alternative methodologies that provide a
more granular understanding of participants’ notification detection.
A direct comparison of our cued recall design, having participants
respond immediately, and other methodologies may further offer
interesting insights.

6.3.7 Notification type. Our study exclusively evaluated one type
of notification: a periodic opacity change effect. We chose this spe-
cific design for its aesthetic appeal and avoided introducing diverse
notification designs as additional variables. This decision was mo-
tivated by the data requirements of our learning-based approach,
aiming for simplicity and clarity in the assessment of noticeability.
Our evaluated notification is solely visual, and this characteristic
may lead to different responses compared to alternative modalities
such as audio and haptics. For instance, while our results suggest
that gaze is a strong predictor for visual notifications, this predic-
tive power may not extend to auditory notifications. Therefore, we
suggest that future research explore a broader range of multimodal
notification designs to enhance the generalizability of the findings
to diverse user interfaces and scenarios.

6.3.8 Missing features. As discussed in Section 4.1, not every one
of the collected samples contained all features, which might have
influenced our analysis of their comparative predictive value. We
imputed missing values by replacing them with the mean before
classification, as this technique can lead to better results than dis-
carding them, which would decrease the sample size.

6.3.9 Ethical Considerations. While the objective of our work was
to establish the technical foundations for creating ambient informa-
tion interfaces that adapt the noticeability of virtual elements based
on user context, it is important to note that such an approach could
inadvertently be misused, potentially contributing to further notifi-
cation overload. In particular, with the ability to predict whether a
user will detect a notification, systems could also be optimized to
make notifications subtly inescapable. We, therefore, believe it is
critical for users to retain agency over when such adaptations are
applied, including more granular control over which applications
or types of information are affected. Future work should consider
these risks and integrate protection mechanisms to mitigate them.

7 Conclusion

In this paper, we present the results of a study involving 12 knowl-
edge workers who each worked for an average of 8 hours, where we
examined gaze, head pose, computer interaction, and self-reported
features to predict interactions with an ambient notification display.
Our analysis demonstrates that, through the implementation of
a model relying on gaze and engagement metrics, we can infer
noticeability with up to 0.81 AUC. Even when excluding engage-
ment metrics, which might be challenging to acquire, we can still
achieve an AUC of 0.76. We further show that models benefit from
a characterization of the user’s level of engagement, while features
measuring their interactions and activities on their primary device
contributed comparatively less. Finally, we show that a general
model provides a good starting point for noticeability prediction
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and that it does not degrade to unusable even when only trained
on a single participant’s data. Overall, our results demonstrate the
feasibility of identifying when users either detect or miss notifica-
tions using sensor data. We believe future approaches to predicting
noticeability can serve as the foundations of ambient information
interfaces that automatically adapt virtual elements to be noticeable
when needed and unobtrusive otherwise.
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A Analysis

We present the detailed results of our analysis of classification
approaches (Table 3), time windows (Table 4), and feature combina-
tions (Table 5).

Model AUC F1 Prec. R. Acc.

Majority 0.5000 0.0000 0.0000 0.0000 0.5257
Threshold 0.7519 0.7444 0.7262 0.7635 0.7513
RF 0.7636  0.7251 0.7521 0.7472  0.7619
Grad. Boost. 0.7835 0.7289 0.7659 0.7531 0.7721
Naive Bayes 0.7083  0.6982 0.6392 0.8255 0.6955
SVM 0.7569  0.7233  0.7217 0.7653  0.7583
Logistic Reg. 0.7417 0.7134 0.7006 0.7584  0.7469
NN 0.7134  0.6739 0.6780 0.7531 0.6914
LSTM 0.7553  0.7149 0.7267 0.7412 0.7523

Table 3: Performance comparison of classification ap-
proaches.

B Machine Learning Tuning

We evaluated the following learning-based classifiers (subsection 5.3)
by applying them to our feature set and testing various hyper-
parameter values through a grid search: gradient boosting (30 es-
timators, max. depth=3, no prior feature selection), random for-
est (300 estimators, selected 5 best features prior to classification
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Time AUC F1 Prec. R. Acc.

0s to 10s 0.7662  0.7045 0.7526  0.7179  0.7573
-10s to 20s 0.7789  0.7279 0.7552  0.7526  0.7708
-30s to 40s 0.7197 0.6802 0.6865 0.7298  0.7098
-10s to Os 0.6431 0.5673 0.5890 0.6682 0.6017
10s to 20s 0.6777 0.6242  0.6471 0.6778  0.6617
-30s to Os 0.6405 0.5926 0.6087 0.6897  0.5997
10s to 40s 0.6768  0.6232  0.6331 0.7058  0.6463

10s sequence 0.7889 0.7421 0.7816 0.7543 0.7820
30s sequence 0.7600  0.7162  0.7432  0.7366  0.7582

Table 4: Comparison of models implemented using features
extracted from different time windows.

Features AUC F1 Prec. R. Acc.
Gaze,, 0.7577 0.7088 0.7326 0.7357 0.7505
Gazeg 0.5891 0.5329 0.5665 0.5687 0.5754
Head,, 0.6279 0.5601 0.5996 0.6221 0.5905
Head; 0.5757 0.4933 05532 0.5156 0.5462
Input 0.5298 0.4303 0.4893 0.4334 0.5330
Activity  0.5033 0.3420 0.4297 0.4318 0.5130
Engagement 0.6854 0.5935 0.6095 0.7585 0.6158
Gaze,, + Input +

0.7633  0.7119 0.7425 0.7375 0.7535

Activity
Gazew + 02116 07566 08097 07618 0.7984
Engagement
Gazew + Gazeg + 2100 06990 07236 07267 07373
Headg
Head,, + Input
Cadw +MPUL T (105 0.5660 0.6016 0.6311 0.6067
Activity
H
cadw + (1 o04 06654 07078 07528 0.6818
Engagement
Head, + Gazeg + ) (120 05899 0.6200 0.6537 0.6106
Headg

Gaze,, + Head,, 0.7551 0.7339 0.7422 0.7861 0.7361

Table 5: Results using different feature combinations. Sub-
scripts w and g denote widget and general.
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based on the ANOVA F-value between the label and feature), SVM
(kernel=RBF, C=1, gamma=0.03, using the 10 best features), Naive
Bayes (using the 5 best features), logistic regression (using the 5
best features), NN (solver=adam, alpha=0.0001, hidden size=128,
layers=1, 5 best features), and LSTM (constructed from a N x 3
input matrix from N features extracted during the following time
intervals: t = —=30stot = 0s,t = —20s to t = 10s, and ¢t = 10s to
t = 40s; solver=adam, alpha=0.0001, hidden size=64, layers=1, pre-
selected 1 best feature). In all our machine learning experiments,
we first imputed missing values by replacing them with a mean and
standardizing features to comparable scales [103].

For our optimal threshold classifier, we exhaustively searched
for a threshold that yielded the highest prediction performance on
normalized statistical feature values computed from each window,
uniformly sampling at an increment of 0.001. Our experiments
showed that thresholding with the minimum gaze angle extracted
from the time window t = 0s to ¢t = 10s achieved the best results.
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