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Figure 1: We study which features determine whether users detect peripherally presented notifications while working. To achieve 
this, we leverage data collected across 12 users, working an average of 8 hours in our setup (98 hours in total). (1) Participants 
engage in productive tasks using a primary device positioned in front of a projection-based ambient display. (2) Notifications, 
represented by 10-second opacity changes to a target information widget (top right), are presented at 5 to 10-minute intervals. 
(3) Users respond to a noticeability sampling prompt to indicate whether they detected a notification, thereby serving as our 
classification ground truth. 

Abstract 
Designing notifications in Augmented Reality (AR) that are notice-
able yet unobtrusive is challenging since achieving this balance 
heavily depends on the user’s context. However, current AR sys-
tems tend to be context-agnostic and require explicit feedback to 
determine whether a user has noticed a notification. This limitation 
restricts AR systems from providing timely notifications that are 
integrated with users’ activities. To address this challenge, we stud-
ied how sensors can infer users’ detection of notifications while 
they work in an office setting. We collected 98 hours of data from 
12 users, including their gaze, head position, computer interac-
tions, and engagement levels. Our findings showed that combining 
gaze and engagement data most accurately classified noticeability 
(𝐴𝑈 𝐶 = 0.81). Even without engagement data, the accuracy was 
still high (𝐴𝑈𝐶 = 0.76). Our study also examines time windowing 
methods and compares general and personalized models. 
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1 Introduction 
New ubiquitous computing paradigms, such as Augmented Reality 
(AR), can present virtual elements at any time, anywhere, and with 
arbitrary appearance and behavior. By situating digital information, 
including notifications, within the users’ ambient environments, 
AR systems facilitate efficient access to information while users en-
gage in their daily activities within the physical world. For instance, 
notifications in AR can keep users informed about scheduled cal-
endar entries, incoming messages, and other relevant events. This 
ultimately helps users maintain a productive awareness of their 
activities and communications within their operating contexts. 
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However, designing effective notifications in such ubiquitous 
information environments is challenging. Generally, notifications 
should be noticeable but not disruptive to the user’s current tasks. 
Since AR notifications can be displayed anywhere within the user’s 
environment, their visibility and disruptiveness depend on the 
user’s context and overall viewing behavior. For example, a no-
tification displayed in the user’s periphery that subtly animates the 
color of a virtual element may be noticed when users are leisurely 
sketching, as their gaze occasionally wanders. The same notifica-
tion might go unnoticed when they are engaged in a cognitively 
demanding task, such as programming, where their focus is on a dis-
play or AR window. Current AR systems have limited capabilities 
to customize notification designs to match contextual needs, partly 
because they lack the ability to automatically detect whether users 
notice a presented notification (i.e., its noticeability). This means 
systems either have to explicitly probe for user feedback to confirm 
noticeability (e.g., wait for users to dismiss a message by pressing a 
button) or optimize notification designs for maximum noticeability, 
both of which can be disruptive. Alternatively, systems may opt 
for a more subtle notification design, but that runs the risk of the 
notifications going unnoticed entirely. While there is substantial 
prior research on optimizing notification designs, including their 
placement, presentation, and timing, work on modeling whether a 
presented notification has been detected remains limited. We be-
lieve this functionality is crucial for providing timely notifications 
that are well-integrated with users’ activities. 

As a step towards addressing this challenge, we investigate the 
feasibility of using sensors to infer whether users detect peripher-
ally presented notifications as they engage in everyday knowledge 
work. The ability to automatically determine the noticeability of 
notifications allows them to be acknowledged based on users’ im-
plicit behaviors, rather than requiring an explicit response that 
would otherwise interrupt the user’s workflow. Additionally, this 
approach serves as a foundation for supporting more intelligent 
and adaptive notification displays. For instance, if the system clas-
sifies an important notification as missed, it can re-display the 
content with a more visually prominent design. Our approach also 
offers the potential for future AR systems to deliver notifications 
less obtrusively by gradually increasing the salience of notification 
while monitoring for noticeability. Finally, the ability to detect no-
ticeability serves as proof-of-concept and a foundation for future 
approaches that predict whether virtual content will be perceived 
before it is presented. 

To develop a sensor-based approach to infer noticeability, we 
first collected data from 12 participants, each working an aver-
age of 8 hours (98 hours of data in total) in front of a projection-
based ambient display situated within a real office setting (Figure 1). 
The ambient display consisted of information widgets that were 
animated to simulate incoming notifications at randomized 5 to 
10-minute intervals. Shortly after each peripherally presented no-
tification, participants were prompted to report whether they de-
tected the additional stimuli. These self-reports serve as our ground 
truth for performing noticeability classification. Besides this explicit 
stimulus-detection record, we collected data on the participants’ 
head pose and gaze, their interactions with their primary device 
for knowledge work, and self-reports of their perceived level of 
engagement with their primary task. 

Based on the data we collected, we demonstrated that it is feasi-
ble to build a classifier that can accurately infer the noticeability 
of notifications, achieving an Area Under the Curve (AUC) score 
of 0.81 by combining gaze and user-reported engagement metrics. 
With the exclusion of engagement measures, a high level of accu-
racy (𝐴𝑈𝐶 = 0.76) can still be achieved. Our analysis also revealed 
that using features extracted from time windows centered on the 
notification enabled the highest classification accuracy, but time 
windows preceding and subsequent to the notification also notably 
held predictive power. Furthermore, our study showed that a gen-
eral classifier is a good starting point for inferring noticeability. 
Lastly, we discovered that using just one to two participants’ data 
for training still produced general models of reasonable accuracy. 

To the best of our knowledge, this is the first work sensing the 
noticeability of notifications based on longitudinally collected data 
in a close-to-in-the-wild setting. We conclude our work with a 
discussion of the implications of our findings for the design of 
AR systems and interfaces, the generalizability of our results, and 
directions for future studies, including the expansion of our method 
to fully uncontrolled settings. In summary, we contribute: 

• A study involving 12 participants who each worked for 
an average of 8 hours, interacting with notifications on a 
projection-based ambient display. Throughout this study, we 
captured data on their gaze, head pose, computer interac-
tions, and engagement levels. 

• A machine learning-based analysis demonstrating the fea-
sibility of sensor-based noticeability prediction. Insights 
include the effectiveness of various time windowing ap-
proaches, the predictive power of sensor and feature combi-
nations, and the performance of general versus personalized 
models in predicting the noticeability of notifications. 

2 Related Work 

2.1 Mobile and Desktop Notifications 
Visual notifications are used pervasively in mobile and desktop 
computing environments to proactively provide users with effi-
cient access to information outside their current focus of atten-
tion [38, 47]. They can support users’ situational awareness [68], 
but can conversely become a disruptive source of productivity 
loss [18], stress [66], and inattention [56] if delivered excessively. 
A significant body of literature has therefore studied notifications 
in a variety of usage contexts [48, 72] and devices [64, 86]. 

Prior research on notifications can generally be divided into two 
lines of work. There has been persistent interest in identifying when 
notifications should be delivered (e.g., [16, 17, 37, 39, 44]). A core con-
sideration relating to this is the interruptibility of the recipient at a 
given moment. Early work (e.g., Czerwinski et al. [16, 17]) demon-
strated that interruptibility depends on factors like relevance, tim-
ing, and user engagement. Based on these empirical intuitions, sub-
sequent works have attempted to estimate human interruptibility 
by using sensors and learning-based models (e.g., [28, 69, 78, 103]). 
In addition to understanding when notifications should be delivered, 
significant prior research has investigated how notifications should 
be presented to redirect the user’s attention to a target location [64]. 
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This has involved exploring a variety of notification delivery modal-
ities within various computing environments, including mobile 
phones [26], desktops [71], and multi-screen settings [34, 64]. 

Our work complements prior research by investigating whether a 
notification was detected (i.e., its noticeability). Sensing noticeability 
enables more implicit interactions, intelligent notification delivery, 
and opens the door to less obtrusive notification approaches. 

2.2 Notifications beyond 2D screens 
In contrast to conventional devices that rely on 2D screens, other 
paradigms like AR enable the integration of digital content into the 
user’s physical environment in a ubiquitous manner, i.e., anytime, 
anywhere, with arbitrary appearance. This entails that notifications 
may appear in the user’s visual periphery and vary in visibility 
depending on their physical backdrop. Several works have begun 
to build toward an understanding of how notifications may be 
perceived in these new computing environments. Gutwin et al. [34] 
and Mairena et al. [64], for instance, explored how factors like effect 
intensity, position, and primary task influenced people’s perception 
of different pop-out effects in the periphery. Petford et al. [77] 
compared five attention-guiding techniques for directing users’ 
attention to an out-of-view target in a full-coverage display. 

Within augmented and virtual reality (AR/VR), research has 
also extensively investigated user preferences for its placement [42, 
53, 58, 73, 80, 84, 85], representation [30, 32, 53, 54], and modal-
ity [14, 52, 57]. Building on AR’s ubiquitous nature, these explo-
rations have been undertaken in a variety of contexts, ranging from 
information consumption on-the-go (e.g., [58]) to usage during 
social interactions (e.g., [84]). While this body of literature has em-
pirically mapped out the factors that determine the appropriate 
notification display, such as how its placement influences its notice-
ability and intrusiveness [80], effective computational approaches 
to implement these findings are generally lacking. The work of 
Chen et al. [11] on predicting opportune moments for notification 
delivery and Lindlbauer et al. [62] on adjusting the level of detail of 
virtual elements are steps in this direction. However, even if notifica-
tions can be delivered with optimal appearance and timing, current 
systems lack the means to automatically verify if they have been 
processed, which limits how fluidly they can integrate digital infor-
mation with users’ activities. To address this challenge, Li et al. [61] 
introduced an LSTM-based method to predict the noticeability of 
dynamic interface elements in a controlled VR setting. 

Our work extends this research by exploring sensor-based meth-
ods to detect user notifications in more natural work environments. 
Unlike Li et al., who used noticeability data from artificial tasks 
such as transcription and arithmetic, our approach is grounded in 
longitudinal data collected from a productive office setting. 

2.3 Models of Visual Attention 
Modeling noticeability, or “perception” according to the model for 
situational awareness by Endsley et al. [23, 24], is in many ways 
equivalent to modeling visual attention, a topic with a rich tradi-
tion (e.g., comprising of theories like Feature Integration [89] and 
Guided Search [95] Theory) within psychology [96] and computer 
vision [8]. Generally speaking, there is agreement that visual at-
tention is affected by both external bottom-up factors [50] (e.g., 

the saliency of a particular feature relative to its background) and 
internal top-down factors [98] (e.g., an individual’s memory or ob-
jectives). Computational approaches for visual attention aimed to 
formalize bottom-up features through low-level image elements 
(e.g., color [63]) and top-down features using contextual informa-
tion [81, 98]. More recent learning-based approaches have further 
tried to model both simultaneously [43]. 

Within HCI research, there has been persistent interest in lever-
aging such existing models as well as extending our understanding 
of attention when engaging with various interactive systems [1], 
such as web-pages [102] and public displays [19]. Research on un-
derstanding and directing user attention in ubiquitous computing 
and immersive environments is most relevant to our work. For ex-
ample, Petford et al. [77] compared several visualization techniques 
to direct user attention to out-of-view targets on a projection-based 
display. Sitzmann et al. [87] analyzed viewing behavior in virtual 
reality. Veas et al. [91] and Grogorick et al. [33] explored various 
attention guidance mechanisms. Vortmann and Putze [92] further 
explored the use of EEG signals to classify internally and externally 
directed attention in a controlled ball and tube alignment task. 

To our knowledge, there is no prior work on modeling the no-
ticeability of changes to virtual elements in an ambient information 
environment, especially in-the-wild. This knowledge is essential 
for creating effective notifications in ubiquitous computing envi-
ronments. Our work addresses this knowledge gap. 

2.4 Ambient / Peripheral / Ubiquitous Displays 
In recent decades, considerable research has focused on integrating 
computing into daily environments [93]. Within this literature, 
several terms have emerged to describe technologies that enable 
these blended virtual-physical environments, including ambient [49, 
51, 65], peripheral [67] and ubiquitous [5, 51] displays. Research 
in this direction has explored many technical approaches, such 
as computationally-enabled surface materials (e.g., [2, 100]) and 
cognitively-responsive immersive work environments (e.g., [101]). 

One popular approach involves enabling interactive applica-
tions by instrumenting environments with camera/projector sys-
tems [9, 55, 82, 97, 101], such as in Brooks’s Intelligent Room [9] 
and Raskar et al.’s office of the future [82]. More recent work, like 
Roomalive [55] and Worldkit [97], sought to lower the barrier of 
entry for developing applications in these computing environments 
through open-sourcing system components. 

In addition to projection-based augmented reality (AR), see-
through head-mounted displays (HMDs) can also provide digitally 
embedded content and computing functions within the environ-
ment [7]. Previous research has demonstrated its potential benefits 
in a variety of contexts, including navigation [60], urban plan-
ning [94], and maintenance [36]. 

Our work introduces an approach to determine the noticeability 
of peripheral notifications presented in the users’ workspace as part 
of a projection-based ambient display. We envision our work in-
forming the design of the aforementioned computing environments, 
agnostic of the specific implementation approach (e.g., projection-
based or HMD). With knowledge of the sensor-based features that 
influence noticeability in a workspace environment, interactive 
systems can support more fluid interactions with notifications. 
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Figure 2: Experimental apparatus. Participants work on a primary task device situated in front of a projection-based ambient 
display in an office environment (center). They self-report detecting or missing notifications (an example illustrated in the 
right) using an auxiliary data collection device. For head pose and gaze tracking, participants wear a pair of Tobii Pro 2 glasses 
an attached HTC Vive Tracker (left). 

3 Data collection 
We collect data to create an approach that predicts users’ detection 
of peripherally-presented notifications while primarily engaged in 
everyday knowledge work. We recruited 12 participants to work for 
around 8 hours each in an office environment equipped with an ad-
ditional projection-based ambient information display. This yielded 
a total of 98 hours of data across all participants. The apparatus, 
shown in Figure 2, was designed to be minimally invasive, resem-
bling Raskar et al.’s Office of the Future [82], where information 
widgets are embedded into the physical environment. The display 
presented 10-second notifications in the user’s periphery every 5 to 
10 minutes. After each notification, participants were prompted to 
report whether they had detected the notification via an auxiliary 
display on their desk. We compiled a comprehensive dataset, includ-
ing the stimuli-detection record, data on head pose, gaze, computer 
interactions, and self-reported ratings of engagement levels. 

3.1 Apparatus 
We allocated a desk in one of our research offices for the study and 
equipped it with the following devices for participants to perform 
their self-selected primary tasks: an external monitor (ForHelp 
15.6 inch), a keyboard, and a mouse. Additionally, we provided 
a projection-based ambient display for presenting notifications 
(ViewSonic PX701-4K), a small additional display (Dcorn 8 inch) for 
prompting participants to report whether they detected a notifica-
tion, and a mouse for participants to input their response. We also 
installed a Kinect V2 camera for capturing the study session for 
later analysis. Lastly, participants wore a pair of Tobii Pro 2 Glasses 
with an attached HTC Vive Tracker for eye and head pose tracking. 
For the primary study task, participants could use their own laptop 
or one we provided. To maintain a consistent primary display for 
all participants, we required them to mirror their devices onto the 
ForHelp display for the study. 

3.2 Ambient Display 
In designing our projection-based ambient display, we drew inspi-
ration from prior visions of ubiquitous displays (e.g., [9, 82]) and 
current widget-based interfaces on mobile phones (e.g., [45]). We 
were guided by the following specifications: (1) the display should 
effectively “disappear” [93] into the physical environment, and (2) 
it should enable quick access to information at a glance. 

Our final display consisted of widgets for checking the weather, 
news headlines, word of the day, air quality, and time, representing 
common task-independent ambient applications (e.g., Han et al. 
[35], Cho et al. [13]). To increase the relevance of the presented 
information to our participants, all widgets are updated in real-time, 
with the weather and air quality applications tailored to the study 
location. Widgets are mapped to physical surfaces and scaled for 
readability. They are placed randomly, while avoiding occlusion 
and respecting surface boundaries, with placement limited to re-
gions within the participant’s peripheral vision when seated at the 
experimental desk, facing the monitor. 

It is important to note that the widgets were intentionally de-
signed to not be relevant to the participants’ primary task. This 
decision was driven by privacy concerns, as the apparatus was 
deployed in a semi-public space. Additionally, as our focus was on 
predicting whether participants can detect additional peripheral 
stimuli, we reasoned that presenting generic auxiliary information 
was sufficient for our purposes. 

Finally, we chose a projection-based ambient display over a head-
mounted display due to the hardware constraints of current head-
sets, such as low resolution and high weight. The projection-based 
setup enables participants to perform their task with a familiar 
setup, which increases the ecological validity of the collected data. 
We hope to replicate our data collection with future headsets, once 
they allow participants to perform their primary task comfortably 
and efficiently over extended periods of time. 



Sensing Noticeability in Ambient Information Environments CHI ’25, April 26–May 01, 2025, Yokohama, Japan 

3.3 Office Environment 
The office environment in which our apparatus was situated was 
simultaneously occupied by 3 to 4 other people who typically work 
in this space. Their daily activities usually involved some form of 
knowledge work, with some collaborating and engaging in dis-
cussions. The office also hosted a coffee machine frequented by 
members of the affiliated research team, serving as a daily gath-
ering space. Occupants and visitors of the space were instructed 
to avoid physically interfering with the ambient display, but they 
were not told to avoid interaction with the participant entirely. 
We intentionally situated our apparatus in this comparatively less 
controlled environment to enable more ecologically valid working 
conditions, which included ambient sounds typical of office settings 
and unexpected bystander interruptions. 

3.4 Notifications 
To collect data for predicting noticeability, we introduced notifi-
cations by animating individual widgets on our projection-based 
display. Every 5 to 10 minutes, the system randomly chooses one 
widget as the notification target (Figure 4). We selected this time 
interval to balance collecting enough samples for machine learning 
and delivering notifications at an ecologically valid frequency (an 
average of 63.5 notifications per day [79]), i.e., infrequently enough 
so that participants cannot anticipate when the next notification 
will occur and focus on their main task. 

We animated widgets by adjusting their opacity to smoothly cre-
ate a subtle, oscillating fade. Each notification involved animating a 
selected widget for 10 seconds, roughly equivalent to 2-3 repetitions 
of a phone ringtone sequence. For our study, we included both a 
slow and a fast opacity change-based notification, drawing inspira-
tion from Gluck et al.’s work [31]. The slow notification faded in 
and out with a 2.5-second period, while the fast notification had 
a 1-second period as a starting point. We adjusted these periods 
during the study to accommodate individual differences in atten-
tion, aiming to achieve an approximate 50% detection rate. These 
adjustments were intended to strike a balance between making 
notifications salient enough to be reliably detected and avoiding an 
overwhelming or intrusive level of stimuli. 

We chose our opacity change-based notification approach after 
exploring alternative notification mechanisms, such as motion and 
flag-based animations, in pilot studies. During these initial explo-
rations, we found that single-state change-based notifications, like 
introducing a flag, were too subtle and users missed them most of 
the time. Compared to other continuous state-change notifications, 
we ultimately selected the opacity-based notification for its aes-
thetic appeal and subtlety. Finally, we settled on the 2.5-second and 
1-second periods for the slow and fast opacity change-based notifi-
cations, respectively, via experimenting with different oscillation 
speeds in additional pilots. 

3.5 Noticeability Sampling 
To collect a ground truth for noticeability, we employed a cued re-
call paradigm, retrospectively prompting participants to self-report 
whether they noticed a previously presented notification. This ap-
proach is notably different from instructing participants to respond 
immediately. We chose this paradigm after observing in our pilots 

Figure 3: Noticeability sampling prompt and reporting inter-
face shown on the additional display. Participants retrospec-
tively reported whether they detected the notification, their 
level of engagement, the degree to which the notification 
distracted them, and their certainty in their detection. 

that requiring immediate responses introduced a significant amount 
of noise to the data. Specifically, it was challenging to distinguish 
signals arising from participants detecting the notification from 
those associated with confirming that they noticed them, i.e., reach-
ing over to our data collection device to indicate their response. 
Disentangling the moment of detection from when participants 
needed to react to a notification resolved this challenge. 

Prompts asking participants to recall detecting a notification 
were shown after a 30- to 60-second delay on a small screen to the 
left of their monitor (Figure 3), which flashed blue. Positioned near 
their mid-peripheral vision, the prompt aimed to be more noticeable 
than the notifications without causing annoyance. We used an 
additional device to ensure that participants could easily access 
the recall prompt. In addition to asking whether they detected the 
notification, we used a 7-point Likert scale to assess their current 
level of engagement with their primary task. We also assessed their 
level of certainty in their detection and the extent to which the 
presented notification was distracting. 

The flow of the notification and sampling procedure is presented 
in Figure 4. To summarize, 10-second notifications were presented at 
randomized 5 to 10-minute intervals. Notifications were followed by 
a 30-second to 1-minute buffer, after which a prompt was presented 
to determine whether the participant had detected the notification. 
The system advances to the next notification (i.e., starts the timer 
for the next interval) either upon receiving a user response or if 
left unanswered for over a minute. We henceforth refer to each 
notification-prompt pair as one trial. In each trial, we denote the 
start of a notification as 𝑡 = 0𝑠 . Notifications are continuously 
displayed between 𝑡 = 0 and 𝑡 = 10𝑠 . 

3.6 Implementation 
We implemented the ambient display and noticeability sampling 
prompt in Unity3D. All widgets were updated with real-time infor-
mation from the web using JSON APIs, including the News API for 
headlines, the Open Weather API for weather-related information, 
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Figure 4: Procedure. 10-second notifications are presented randomly at 5 to 10-minute intervals. After each notification, there 
is a 30 to 60-second delay, after which participants are retrospectively prompted to report whether they detected notification. 
The system proceeds to the next notification upon a user response or if it is left unanswered for over a minute. One trial refers 
to a notification-prompt pair. 

and the Words API for words and definitions. To map the widget 
display to the surrounding physical environment, we pre-calibrated 
the projector to the environment using an additional Kinect V2 
sensor and the RoomAlive Toolkit [55]. The ambient display and 
notification prompt application was deployed on an Alienware Au-
rora R12 desktop computer (Windows 10, Intel Core i9 119000KF, 
NVIDIA GeForce RTX 3090 24GB, 32GB RAM). 

3.7 Head Pose and Gaze Tracking 
To perform head pose and gaze tracking, we attached an HTC Vive 
Tracker to a pair of Tobii Pro 2 Glasses. We implemented a separate 
Unity3D application for logging the HTC Vive Tracker position 
and orientation (sampled at 30Hz). We adapted De Tommaso and 
Wykowska’s Python controller [21] for logging the relevant gaze 
data (sampled at 50Hz). We manually calibrated the coordinate 
systems of the Vive Tracker and Tobii Glasses. To calibrate the head 
pose and gaze with the ambient display, we performed a three-point 
calibration before the start of each study session. Both applications 
were deployed on the same desktop computer as the ambient display 
and notification prompt. We connected and synchronized all three 
applications via a web socket (e.g., starting and stopping logging). 

3.8 Monitoring Tool 
To collect computer interaction data, we adapted the monitoring 
tool developed by Meyer et al. [70]. We tracked participant’s mouse 
and keyboard interactions, as well as the active window. For mouse 
interactions, we recorded clicks (button) and movement (distance 
moved in pixels), along with corresponding timestamps. Regarding 
the keyboard, we logged keystroke types (normal, navigating, or 
delete key) with timestamps. For the active window, we captured 
the name of the active process and its activity category (e.g., coding, 
emailing, writing documents), along with the timestamp of user 
window switches. To categorize activities, we followed the method 
described by Züger et al. [103]. For privacy purposes, we did not 
record participants’ specific key strokes and the active window title. 
The monitoring tool was deployed on the device participants used 
for their primary task during the study, and deleted after the study. 
We connected the monitoring tool with the ambient display and 
notification sampling application through a web socket. 

3.9 Procedure 
At the beginning of the study, we explained the purpose and process 
of the study, with detailed information about the signals we would 
collect. The participants then signed a consent form and completed 
a demographic questionnaire inquiring about their age, gender, 
experience with spatially immersive interfaces, daily time spent in 
front of a display, and notification engagement practices. 

Subsequently, participants were guided to their assigned work 
desk, where the researcher showed them the apparatus, introduced 
the sensors and the data we collected in more detail, and demon-
strated the study procedure with a sped-up version of the notifica-
tion response task. Following, the researcher assisted participants 
in connecting their personal devices or our provided computers to 
the external monitor on the desk. They also helped install and set 
up the monitoring tool, had the participants put on the eye-tracking 
glasses, started the ambient display and notification sampling appli-
cation, and performed calibration between all the sensors. Finally, 
after confirming that all system components were correctly set up 
and logging data as required, we instructed participants to begin 
their work. We told participants to mainly do productive work on 
their primary device; however, they are also free to take breaks at 
any time. We emphasized that they should concentrate on their 
primary device and refrain from actively monitoring the ambient 
display, as well as avoid interacting with auxiliary devices like 
smartphones and tablets. Beyond these considerations, we inten-
tionally did not specify any constraints around what task the par-
ticipant should engage in, to encourage natural, everyday working 
behaviors. Upon receiving a notification, participants are instructed 
to simply continue with their work while remaining cognizant of 
the notification to report when prompted. 

A full session of the study lasted approximately 8 hours, with 
start and finish times tailored to each participant’s preferences and 
work routine. Most participants opted for a break every one to 
two hours, returning for multiple sessions to complete the study. 
Participants were compensated with a $150 gift card. The study 
was approved by the local IRB. 

3.10 Participants 
We recruited 12 participants through personal contacts and univer-
sity communication channels. All were graduate or undergraduate 
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Total per Participant 
Notifications 740 occurrences 62 occurrences (7) 

Gaze & head pose 90.6 hours 7.6 hours (1.2) 
Computer input 94.1 hours 7.8 hours (1.1) 

Computer activity 51.6 hours 4.3 hours (3.8) 
Table 1: Dataset after pre-processing. Per participant metrics 
are reported as M (SD). 

students with an average age of 25 years (𝑆𝐷 = 3). 7 were female 
and 5 were male. 10 participants were researchers from a range of 
disciplines, including education, design, mechanical engineering, 
computational fabrication, and human-computer interaction. We fo-
cused on researchers and students as one community of knowledge 
workers because of the diversity of their tasks, extensive computer 
usage in their work, and availability [4]. Our participants reported 
spending an average of 8 hours (𝑆 𝐷 = 2) in front of a computing dis-
play on a daily basis. On a 1 (none) to 7 (expert) scale, participants 
reported a relatively low amount of experience with spatially im-
mersive interfaces (𝑀 = 2.5, 𝑆𝐷 = 1.4). This was expected as such 
interfaces are currently still far from ubiquitous. Participants also 
reported often checking for notifications while working, 𝑀 = 4.8 
(𝑆𝐷 = 0.9), on a scale from 1 (never) to 7 (always). 2 out of 12 par-
ticipants used their own device connected to the primary display, 
5 participants opted to use a laptop we provided, and 5 set up a 
Remote Desktop connection to their own device via our laptop. 

3.11 Data Summary 
We collected a total of 98 hours of data from 12 participants (𝑀 = 8 
hours per participant, 𝑆𝐷 = 1). Participants spent the majority of 
their time browsing the internet for work-related purposes (52%), 
followed by reading and editing documents and other artifacts 
(26%), miscellaneous tasks (5%), and planning-related tasks (3.6%; 
e.g., editing calendar entries). Within this time, participants were 
collectively presented with 793 notifications (𝑀 = 66 per partici-
pant, 𝑆𝐷 = 7). They responded to 87% (𝑆𝐷 = 11%) of the noticeabil-
ity sampling prompts they received. Based on our observations, the 
remaining prompts were missed entirely. We speculate this may 
have occurred because participants were either highly focused on 
their primary task, leading to "tunnel vision" [20], or leaning closer 
to their display, making the notifications and prompt appear further 
in their peripheral vision. On average, participants detected 49% 
(𝑆𝐷 = 16%) of the notifications. 

4 Features and Data Processing 
Prior to the main analysis, we performed several pre-processing 
steps that are summarized as follows. 

4.1 Basic Pre-processing 
We initiated our pre-processing by manually inspecting the data. 
Figure 4 illustrates the notion of a trial within the context of our 
data collection. We examined the Kinect-captured video of the 
participants’ activities in the 70-second interval centered around 
each notification (i.e., including the 10-second notification display 
and the 30 seconds before and after), the computer interaction (i.e., 
input and activity), gaze, and head pose data logs. 

Since we were primarily interested in predicting whether users 
can detect peripherally-presented notifications while engaged in 
everyday work, we excluded trials where participants were not 
focused on their primary device. This included scenarios like the 
participant engaging in conversation with others in the office (21 oc-
currences) or using their personal mobile devices (32 occurrences). 
From our initial analysis, we also encountered issues with recording 
computer input and activity data. First, when participants estab-
lished a Remote Desktop connection, the recorded active process 
was the Remote Desktop client, rather than their device’s actual 
active process. Consequently, we excluded the computer activity 
data collected from these five participants. Secondly, for a specific 
set of trials, an oversight by the experimenter resulted in the moni-
toring tool not being initiated. Errors in gaze and pose data were 
primarily attributed to manual miscalibrations. 

Out of 793 notifications (i.e., trials), we excluded 53 trials entirely, 
along with computer input data from 8 trials, computer activity 
data from 362 trials (5 participants), and gaze and head pose data 
from 42 trials. One participant misunderstood the instructions and 
used the certainty Likert scale to indicate whether they detected 
a notification. For them, a high score indicated that they noticed 
the notification and a low score indicated otherwise. We, therefore, 
determined their noticeability labels by dividing their Likert scale 
into two states (1234 for missed and 567 for noticed). 

We provide a summary of the dataset after pre-processing in 
Table 1. Our final dataset comprised 740 notifications. In this pre-
processed dataset, participants responded to 88% (𝑆𝐷 = 10%) of 
the noticeability sampling prompts they received, detecting 46% 
(𝑆 𝐷 = 15%) of the notifications. 

4.2 Feature Extraction 
After pre-processing the data, we extracted features from the raw 
sensor logs to build the noticeability classifier. We identified features 
previously linked to cognitive and attentional states, as well as 
interruptibility. This includes metrics characterizing participants’ 
gaze, head pose, computer input and activity, and perceived level of 
engagement. Table 2 provides a summary of the extracted features. 

4.2.1 Gaze and head pose. The Tobii Pro 2 glasses and Vive Tracker 
continuously capture participants’ head position, orientation, and 
gaze direction. By combining these data with the known positions 
of information widgets in the environment, we estimated the visi-
bility of notifications in relation to the participants’ visual attention 
using two metrics: a head-to-widget angle and a gaze-to-widget 
angle. The head-to-widget and gaze-to-widget angles refer to the 
angles between the normalized direction vector from the partici-
pant’s head position to the notification and the directions of the 
participant’s head and gaze, respectively. We also characterize the 
general movements of the head and gaze of the participants with 
their head angular velocity, head positional velocity, gaze angle [11], 
and gaze-shift speed [11]. 

4.2.2 Computer input and activity. Using the computer interac-
tion and activity data, we compute a feature set similar to Züger 
et al. [103]. We extracted keystrokes and mouse events (i.e., mouse 
clicks, mouse movement distance) to approximate the user’s level of 
interaction with their device. We also extracted application window 
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Feature type Feature Reference 
Gaze (widget) gaze-to-widget angle (min, max, mean, std) 

[6, 11, 22, 25]Gaze (general) gaze angle (min, max, mean, std), gaze shift speed 
(min, max, mean, std) 

Head pose (widget) head-to-widget angle (min, max, mean, std) 
Head pose (general) head positional velocity (min, max, mean, std), head 

angular velocity (min, max, mean, std) 
Computer input keystrokes (sum), mouse clicks (sum), mouse move-

ment distance (sum) [3, 40, 41, 46, 103] 

Computer activity window focus duration (max), window switches 
(sum), activity focus duration (max), activity switches 
(sum) 

Engagement engagement [11, 29, 59, 76, 103] 

Table 2: Extracted features are grouped by type, accompanied by references to prior work where they have been defined or used. 
Gaze (widget) and head pose (widget) metrics define their respective relative spatial relationships to the notification, while gaze 
(general) and head pose (general) metrics characterize their general behavior. The bracketed and colored values additionally 
indicate the statistics used to characterize each feature in the time windows we analyzed. 

features to measure engagement in windows and specific activity 
categories, focus duration (i.e., in window or in activity), as well 
as window and activity switching events (i.e., window switches, 
activity switches). We follow Züger et al.’s semi-automatic method-
ology [103] for obtaining categories, which maps windows and 
process names to categories like coding and email. 

4.2.3 Engagement. Our noticeability sampling prompt included 
Likert ratings for participants to report their level of engagement 
with their primary task, their level of certainty in their detection, 
and the extent to which they perceived the notification as distract-
ing. Since prior research has shown that user engagement influences 
their receptiveness to notifications (e.g., [11]), we include it as an 
additional feature in our analysis. We did not include participants’ 
reports of certainty and distraction as features because these reflect 
their perception of the notification instead of their state at the time 
the notification is presented. 

4.3 Time Windows 
To further prepare our data for noticeability classification, we trans-
formed our continuous time-series data streams into discrete input 
variables. This involved computing summary metrics for each of 
our extracted features within different time windows (e.g., sum, 
mean, max, min, standard deviation). We focused on analyzing time 
windows closer to the notification display (i.e., within 30 seconds) 
because we expected significant fluctuations in participants’ at-
tentional states and activities throughout the study [4]. The time 
windows we examined include: 𝑡 = 0𝑠 to 10𝑠 (i.e., during the no-
tification display), 𝑡 = −10𝑠 to 20𝑠 (i.e., a 30-second time window 
centered on the notification display), 𝑡 = −30𝑠 to 40𝑠 (i.e., a 70-
second time window centered on the notification display), 𝑡 = −10𝑠 
to 0𝑠 (i.e., the 10-second time window prior the notification display), 
𝑡 = 10𝑠 to 20𝑠 (i.e., the 10-second time window following the no-
tification display), 𝑡 = −30𝑠 to 0𝑠 (i.e., the 30-second time window 
prior the notification display), and 𝑡 = 10𝑠 to 40𝑠 (i.e., the 30-second 
time window following the notification display). 

5 Sensing Noticeability 
To assess the predictive capabilities of our data on participants’ de-
tection of peripherally-presented notifications, we applied machine 
learning on pre-processed features, with participants’ self-reports 
serving as the ground truth. In the following, we compare the per-
formance of different classification algorithms, explore feature ex-
traction from continuous data streams with varying time windows, 
and investigate different feature combinations. Additionally, we 
assess the scalability of our approach and compare the performance 
of a personalized model to a general classifier. 

5.1 Evaluation Method & Metrics 
In all our experiments, unless otherwise specified (e.g., Section 5.6), 
we adopted a leave-one-participant-out cross-validation method 
(LOOCV) to evaluate different approaches. One participant’s data 
was used as test data, while the data from the remaining 11 partici-
pants were used as training data. The results were averaged over 10 
runs. We quantify performance using standard machine learning 
metrics, including accuracy, recall, precision, F1-score, and the area 
under the receiver operating characteristic curve (AUC). For the 
sake of conciseness, we focus on reporting the AUC. Additional 
metrics and experiments are detailed in Appendix A. 

5.2 Overview of Results 
Overall, our results suggest that inferring whether participants de-
tected a peripheral notification with sensor data is feasible. Specifi-
cally, a gradient boosting pipeline achieved an AUC of 0.78 using all 
available sensor features. By refining our time windowing approach 
and feature selection, we achieved a higher AUC of 0.81. 

Through our analysis, we observed that users’ gaze relative to the 
notification display and their engagement at the time a peripheral 
notification is shown were the most informative for predicting 
noticeability. Additionally, while a general model may not fully 
capture all individual behavioral differences, it still demonstrates 
reasonable performance, even when trained on limited user data. 
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Figure 5: Comparison of classification approaches. 

5.3 Classification Approaches 
We initially evaluated several traditional machine learning classi-
fiers, as cited in the interruptibility and notification literature [11, 
90]. These classifiers include a random forest classifier, gradient 
boosting classifier, AdaBoost classifier, Naive Bayes classifier, Sup-
port Vector Machine (SVM), neural network (NN), and logistic 
regression. All classifiers were implemented using scikit-learn [75]. 

Next, given that approaches based on Long Short-term Memory 
(LSTM) neural networks have demonstrated potential in time-series 
classification tasks such as interruptibility prediction [11] and gaze 
pattern recognition [88], we decided to investigate their classifica-
tion performance as well. We implemented a LSTM model using 
PyTorch [74]. As input, we experimented with features extracted 
from consecutive 10𝑠 and 30𝑠 time windows. 

Lastly, we evaluated two baseline models: a majority classifier 
and an optimal threshold classifier. The majority classifier always 
predicts the more prevalent class, which in this case is that the 
participant missed the notification. Our optimal threshold classifier 
predicts whether a notification has been detected or missed based on 
a single variable. Through experiments, we found that thresholding 
using the minimum gaze angle extracted from the time window 
𝑡 = 0𝑠 to 𝑡 = 10𝑠 yielded the best performance. 

Details on the design and tuning of the aforementioned models 
are provided in Appendix B. 

5.3.1 Results. Figure 5 compares the classification approaches we 
evaluated. Overall, the gradient boosting classifier achieved the 
highest performance, with an AUC of 0.78. Excluding the major-
ity classifier, all other approaches, including our naive unimodal 
thresholding baseline, also demonstrated reasonable performance, 
with AUCs of at least 0.71. These results not only suggest that it 
may be feasible to predict whether participants will detect a 
peripheral notification in AR while engaged in knowledge 
work, but also indicate that the collected sensor data contains 
features with high predictive power that do not necessarily 
require a complex model to learn. 

For the remainder of the paper, we present results using the 
gradient boosting model, as it achieved comparatively better per-
formance without requiring any feature pre-selection. 

1.0 

0.8 

0.6 

0.4 

0.2 

0.0 

A
U

C
 

0s
 to

 10
s

 10
s t

o 2
0s

-30
s t

o 4
0s

 
30

s s
eq

ue
nc

e

-10
s t

o 2
0s

 -10
s t

o 0
s

 -30
s t

o 0
s

10
s t

o 4
0s

10
s s

eq
ue

nc
e

Time 

Figure 6: Comparison of models implemented using features 
extracted from different time windows. 

5.4 Time Windows 
To investigate the predictive power of our features extracted from 
different time windows, we trained separate gradient boosting clas-
sifiers using each window feature set (i.e., seven models, one for 
each time window listed in Section 4.3). Additionally, we examined 
the performance of the model when using a combination of features 
extracted from 10𝑠 and 30𝑠 time window sequences. 

5.4.1 Results. The prediction performance using different time 
windows is presented in Figure 6. Overall, models using features 
from a time window that overlapped with the notification gener-
ally performed best, with the most accurate achieving a 0.78 AUC 
(i.e., using features from 𝑡 = −10𝑠 to 20𝑠 ). This suggests that users’ 
activities near the time a peripheral notification is presented 
are the most informative for predicting noticeability. How-
ever, features from time windows capturing activities before or 
after a notification also demonstrated reasonable performance. For 
example, signals extracted from 10-second windows before or after 
a notification achieved AUCs of 0.64 and 0.68, respectively. This sug-
gests that behaviors preceding the notification window may 
serve as predictors of participants’ impending notification 
detection. Similarly, the predictive signal conveyed by features 
from the time window following the notification indicates that re-
ceiving the notification may have influenced the participants’ 
subsequent behaviors. 

Lastly, our results show that using a 10𝑠 window sequence (AUC 
= 0.79) instead of a single 10- (AUC = 0.77) or 30-second window 
(AUC = 0.78) provides a slight boost in performance. Though the 
difference is comparatively minor, this nonetheless suggests that ex-
plicitly providing the model with inputs representing participants’ 
interactions and behaviors before and after the notification may 
beneficially enhance contextualization. 

5.5 Feature Importance 
To explore which combinations of features best predicted noticeabil-
ity, we implemented gradient boosting classifiers using data from 
each sensor individually and combinations thereof. We utilized fea-
tures extracted from 10𝑠 window sequences, guided by the results 
in Section 5.4. In addition, we quantify feature importance using 
Gini impurity from scikit-learn [75]. This measure captures each 
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Figure 7: Feature Importance. (a) Comparison of models implemented using different feature combinations. (b) Gini impurity. 
Subscripts 𝑤 and 𝑔 denote widget and general. 
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Figure 8: ROC curves. (a) Cross-validation results obtained by leaving different numbers of users out. (b) Results from leave-
one-participant-out cross-validation using a general model. (c) Comparison of a general versus an individual model. 

feature’s contribution in a gradient boosting classifier to influence 
the classification outcome. We calculated Gini impurity using a 
gradient boosting classifier constructed with all features extracted 
from the 10𝑠 window sequence. 

5.5.1 Results. Figure 7a presents the prediction results using differ-
ent feature combinations. Figure 7b presents the computed feature 
importances. Overall, the results suggest that gaze relative to the 
notification display is the strongest predictor of noticeability, 
achieving the highest AUC (0.75) and emerging as the most impor-
tant feature (58%) by a significant margin. Engagement emerged 
as the second most predictive feature, achieving an AUC of 0.69 
and Gini impurity of 18.8%. Combining the aforementioned gaze 
and engagement features yielded our best-performing model, 
achieving an AUC of 0.81. However, combining additional features 
did not improve performance; in some cases, it even resulted in 
decreased prediction accuracy. This suggests that not all sensors 
were complementary, and introducing certain sensors may 
instead add noise, adversely impacting performance. 

Excluding gaze-related metrics, features characterizing partici-
pants’ head pose relative to the notification display still achieved 
reasonable above-chance performance (AUC = 0.63), particularly 
when combined with engagement (AUC = 0.73). On the other hand, 

computer input and activity were the least important features, with 
Gini impurity scores of 2.9% and 1.0%, respectively. Using a classi-
fier based solely on computer input and activity similarly yielded 
the lowest AUC scores, with 0.53 and 0.51, respectively. 

5.6 Scalability 
We assessed the scalability of our gradient boosting classifier to 
new users by conducting a leave-1, 2, 4, 6, 8, 10, 11-participants-out 
cross-validation. For exploration, we also performed a leave-0-
participants-out cross-validation. 

5.6.1 Results. Figure 8a presents the results of our experiments 
on scalability. Leaving out data from 10 participants resulted in 
an AUC of 0.68, compared to 0.78 when excluding one user. This 
indicates that while the model benefits from training on data 
from more participants, it may still generalize well enough 
to provide reasonable performance even with limited user 
data. Our leave-0-participants-out cross validation resulted in an 
AUC of 0.89, suggesting some degree of ambiguity in the data, as 
the model could not perfectly match the data of users even when 
they are included in the training set. 
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5.7 Personalization 
To examine the extent to which a general model may account for 
individual differences, we analyzed individual ROC plots generated 
during leave-one-participant-out cross-validation. We also investi-
gated whether access to individual data could enhance model per-
formance by training personalized models for each participant. For 
this, we used the same gradient boosting pipeline to generate learn-
ing curves for each individual through shuffle split cross-validation 
(100 splits, with a test size of 20% of the available samples). 

5.7.1 Results. As shown in Figure 8b, while our classifier achieves 
reasonable accuracy on average, its performance varies significantly 
across participants. This suggests that a general model may not 
effectively capture all individual behavioral differences. 

Figure 8c shows ROC curves of a general versus individual model. 
On average, individual classifiers achieved a lower AUC (0.74) 
compared to the general models. However, on a participant-by-
participant basis, individual models sometimes outperformed the 
general model, as evidenced by overlaps in the learning curves. 
This suggests that while personalized models did not significantly 
improve overall performance, accounting for individual differences 
may still be beneficial. An important caveat to consider, however, is 
that the general models were trained on over 10 times the amount 
of data available to the individualized models (i.e., data from 11 
participants compared to only 80% of one participant’s data), which 
may have biased these results. 

6 Discussion 
In this work, we investigated the feasibility of predicting people’s 
detection of peripherally presented notifications using gaze, head 
pose, computer activity, and self-reported levels of engagement. 
To this end, we collected and performed a machine learning-based 
analysis of data on interactions with notifications across 12 partic-
ipants. Based on our results, we discuss implications for ambient 
interfaces and opportunities for future work. 

6.1 Usage 
In general, a classifier for the noticeability of interface elements 
supports several novel interactive functionalities. First, it enables 
acknowledgment of notifications based on implicit behaviors rather 
than explicit feedback, thus reducing unnecessary interruptions to 
the user’s workflow. Second, it provides the system with knowledge 
of whether the user should be prompted again (i.e., in cases where 
the notification has been classified as missed). Finally, it opens the 
door to less obtrusive notification delivery by gradually increasing 
the visual saliency of a notification while monitoring whether it 
is noticed. Specifically, with our current approach, we may gradu-
ally increase the frequency at which a virtual element fades while 
checking the sensor signals at 10-second intervals to determine if 
it has been detected. This allows notifications to be presented in a 
just-noticeable manner. 

A classifier that can predict a user’s susceptibility to a notifica-
tion (i.e., whether they will notice an upcoming notification) offers 
further support for the intelligent delivery of notifications. Based 
on predictions of whether a user will notice a notification, the sys-
tem may adjust the saliency of its presentation to strike a balance 

between being noticeable and not overly obtrusive. If the classifier 
determines that a user is unlikely to notice an upcoming notifica-
tion, it can be presented in a more salient manner (e.g., increased 
oscillation speed for our transparency adjustment effect). In the 
converse case, the presentation can be reduced in saliency. 

6.2 Implications 
Our current results demonstrate that constructing a classification-
based approach for noticeability using sensors is feasible. While our 
sensors provide some signals for predicting future noticeability, this 
task proves to be more challenging in comparison. Our learning-
based analysis further provides the following insights for enabling 
the use of sensor-based approaches to classify noticeability: 

First, since features extracted from the 10s time window sur-
rounding the notification were most predictive, future systems 
should prioritize capturing user behavior signals overlapping 
with the notification for optimal noticeability detection. 

Second, based on our ablation studies and analyses of feature 
importance, future systems should focus on capturing the user’s 
gaze or head pose relative to the notification. In contrast, the 
user’s interactions with their devices may be less valuable as a 
signal to capture, as they offer less predictive power. 

Our results further suggest that understanding the user’s level 
of engagement with their primary task will benefit notice-
ability prediction; however, capturing this information may pose 
additional challenges. While the metrics like gaze, head pose, and in-
put can be collected directly from off-the-shelf sensors if the users’ 
workspace and devices are appropriately instrumented, engage-
ment is a property of the user’s cognitive state and can currently 
only be self-reported or imperfectly inferred from proxy metrics 
like EEG [15] and video data [83]. That said, while incorporating en-
gagement achieved the best performance (𝐴𝑈 𝐶 = 0.81), excluding 
the engagement feature still enables the development of reasonably 
performing models (i.e., achieving an AUC of 0.76 using gaze alone). 
Notably, an AUC of 0.76 is comparable to performance achieved by 
prior work on modeling noticeability [61] and interruptibility [103], 
some of which were conducted in more controlled contexts. 

The combination of sensors can ultimately be tailored to specific 
usage requirements. For instance, our gaze-based model may be suf-
ficient for lower-stakes scenarios where classification errors have 
minimal consequences for the user experience, such as displaying a 
non-critical weather alert. In this example, if the notification is set 
to be dismissed implicitly based on the model classification result, a 
false positive prediction (e.g., incorrectly identified as noticed) may 
be acceptable, as the information does not require urgent attention. 
We believe that it is, in fact, in these scenarios where subtlety is 
the objective that our approach may be most applicable. In con-
trast, in higher-stakes scenarios (e.g., a reminder for an interview), 
notifications should arguably be optimized for maximum notice-
ability, which is how they are effectively designed now. That said, 
awareness of noticeability can still be valuable in these settings, 
highlighting future opportunities to improve our models. Our ap-
proach lays the groundwork for more complex and, hopefully, more 
accurate models that include measures such as engagement. 

Lastly, our results suggest that constructing a general model 
offers reasonable performance. Therefore, while a general model 
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is not robust to individual differences, systems can likely begin with 
a model constructed from data captured from multiple users rather 
than relying solely on personalized data collection. 

Our results offer practical insights for both projection- and HMD-
based AR systems. For projection-based displays, our results suggest 
that additional instrumentation for gaze and head-pose tracking is 
needed to facilitate noticeability sensing. Our apparatus was also de-
signed to mimic the characteristics of a lightweight HMD, free from 
the current device and ergonomic constraints (e.g., limited field of 
view) and extended with additional sensing modalities (e.g., gaze). 
Our notifications effectively represent world-fixed AR elements, 
a common placement pattern where the information is fixed the 
physical environment and displayed in situ [27, 62, 85]. Current 
commercial HMDs (e.g., Apple Vision Pro) can similarly character-
ize a user’s gaze and head pose relative to world-fixed AR elements, 
and we therefore anticipate that our findings may translate directly. 
Additionally, though the sensors on current HMDs capture similar 
information (e.g., gaze, head pose), they are not identical to the 
ones used in our apparatus, as discussed below. 

6.3 Limitations and Future Work 
Our current work is subject to several limitations, which we de-
scribe in the following. 

6.3.1 Towards “In-the-Wild” conditions. The first concern is whether 
the study conditions were sufficiently realistic. We conducted our 
study in an office where the usual occupants worked alongside 
the participants and engaged in their typical activities, provided 
they did not physically interfere with the ambient display. While 
this setup enabled conditions closer to real working environments, 
such as prompting cases of bystander interference, it may have 
nonetheless precluded a fully “in-the-wild” experience. For instance, 
although other office occupants were not explicitly instructed to 
avoid interacting with the study participants, they may have felt 
disinclined to do so due to concerns about interfering with the 
research. Additionally, the study required participants to work in 
a foreign environment under consistent monitoring, which may 
have also inhibited their natural work behaviors. We believe the 
extensive eight-hour study period we used would have allowed 
participants to acclimate; however, future iterations could always 
consider extending the deployment duration. To addressing these 
challenges, we are currently modularizing the setup to support 
deployment participants’ own productivity environments. 

6.3.2 Generalizability across environments, tasks, and displays. We 
conducted our study with participants working in a specific of-
fice. This precludes many other work settings. In addition to an 
office setting, for example, knowledge workers typically work in 
libraries, coffee shops, and other public spaces. Even if we were 
to constrain the target environment to an office, offices differ in 
furniture arrangement and size. 

Besides differences in environments, while our participants per-
formed a variety of canonical knowledge work tasks, such as brows-
ing and reading documents, these tasks are by no means exhaustive. 
Furthermore, beyond knowledge work, AR has also been applied to 
a variety of usage scenarios, such as social settings (e.g., [10]) and 
on-the-go information consumption (e.g., [58]). 

Lastly, in AR settings, virtual interface elements can also vary sig-
nificantly in their presentation. In addition to the surface-embedded 
method of presentation we use, virtual elements can be presented 
in mid-air [12] or anchored to the user’s field of view [62]. 

Ultimately, additional research is required to validate its rele-
vance across a broader range of environments, tasks, and displays. 

6.3.3 Notification timing. Our study randomly introduces notifi-
cations at 5 to 10-minute intervals. This decision was intended 
to strike a balance between collecting sufficient samples for per-
forming learning-based analysis and presenting notifications at an 
ecologically valid frequency. While we somewhat perturbed the 
interval between notifications, the periodic delivery of notifica-
tions may not be representative of real life, where notifications 
can arrive in bursts or not at all for extended durations. This also 
raises concerns about participants’ ability to anticipate notification 
arrivals in advance. From our observations and informal conver-
sations with participants, we did not find that participants were 
actively expecting notifications; nonetheless, for greater ecological 
validity, future iterations can consider adopting more varied and 
naturalistic patterns of notification delivery. 

6.3.4 Projection-based approach. In our current apparatus, we used 
a projection-based approach to circumvent the limitations of cur-
rent head-mounted AR displays, such as their weight and limited 
field of view. We captured signals similar to those available on 
HMDs (e.g., gaze, head pose) under quasi-ideal tracking conditions. 
Our decisions were guided by the goal of ensuring that our findings 
would remain relevant not only to present technologies but also 
to future advancements, offering more seamless and ubiquitous 
digital information displays. That said, this raises questions about 
whether our findings can directly inform the design of current 
head-mounted displays, where the sensors used may differ and 
suffer from inaccuracies. Therefore, we see value in replicating the 
experiment with current and future headsets, particularly in more 
challenging environments that introduce sensing difficulties. 

6.3.5 Single device vs multi device. In our study, we focused on 
contexts where participants were fully engaged in productive work 
on a single desktop device. However, current users engage in a 
significantly wider variety of tasks within multi-device ecologies 
that include diverse screen form factors and arrangements [99]. Ex-
tending the considered activities and screen configurations within 
our model, therefore, serves as a valuable direction for future work. 

6.3.6 Recall vs immediate response. Our study might also be con-
strained by the selection of notifications and the procedures used for 
their presentation. First and foremost, in our study, we assessed the 
noticeability of 10-second animations using a cued recall approach. 
The choice of a 10-second duration was justified by its equivalence 
to receiving two to three phone ringtones. We specifically chose a 
cued recall paradigm after pilot testing revealed that asking for an 
immediate response made it challenging to differentiate between 
signals arising from detecting the notification and participants’ re-
sponses. This approach, however, suffers from several limitations. 
First, while we could determine if participants detected a notifica-
tion within the 10-second window, this method prevented us from 
pinpointing the exact moment of detection. Second, this approach 
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required participants to keep the notification in mind until the re-
call prompt, which may have influenced their subsequent behavior 
and involved a memory bias. To address this, future studies may 
benefit from employing alternative methodologies that provide a 
more granular understanding of participants’ notification detection. 
A direct comparison of our cued recall design, having participants 
respond immediately, and other methodologies may further offer 
interesting insights. 

6.3.7 Notification type. Our study exclusively evaluated one type 
of notification: a periodic opacity change effect. We chose this spe-
cific design for its aesthetic appeal and avoided introducing diverse 
notification designs as additional variables. This decision was mo-
tivated by the data requirements of our learning-based approach, 
aiming for simplicity and clarity in the assessment of noticeability. 
Our evaluated notification is solely visual, and this characteristic 
may lead to different responses compared to alternative modalities 
such as audio and haptics. For instance, while our results suggest 
that gaze is a strong predictor for visual notifications, this predic-
tive power may not extend to auditory notifications. Therefore, we 
suggest that future research explore a broader range of multimodal 
notification designs to enhance the generalizability of the findings 
to diverse user interfaces and scenarios. 

6.3.8 Missing features. As discussed in Section 4.1, not every one 
of the collected samples contained all features, which might have 
influenced our analysis of their comparative predictive value. We 
imputed missing values by replacing them with the mean before 
classification, as this technique can lead to better results than dis-
carding them, which would decrease the sample size. 

6.3.9 Ethical Considerations. While the objective of our work was 
to establish the technical foundations for creating ambient informa-
tion interfaces that adapt the noticeability of virtual elements based 
on user context, it is important to note that such an approach could 
inadvertently be misused, potentially contributing to further notifi-
cation overload. In particular, with the ability to predict whether a 
user will detect a notification, systems could also be optimized to 
make notifications subtly inescapable. We, therefore, believe it is 
critical for users to retain agency over when such adaptations are 
applied, including more granular control over which applications 
or types of information are affected. Future work should consider 
these risks and integrate protection mechanisms to mitigate them. 

7 Conclusion 
In this paper, we present the results of a study involving 12 knowl-
edge workers who each worked for an average of 8 hours, where we 
examined gaze, head pose, computer interaction, and self-reported 
features to predict interactions with an ambient notification display. 
Our analysis demonstrates that, through the implementation of 
a model relying on gaze and engagement metrics, we can infer 
noticeability with up to 0.81 AUC. Even when excluding engage-
ment metrics, which might be challenging to acquire, we can still 
achieve an AUC of 0.76. We further show that models benefit from 
a characterization of the user’s level of engagement, while features 
measuring their interactions and activities on their primary device 
contributed comparatively less. Finally, we show that a general 
model provides a good starting point for noticeability prediction 

and that it does not degrade to unusable even when only trained 
on a single participant’s data. Overall, our results demonstrate the 
feasibility of identifying when users either detect or miss notifica-
tions using sensor data. We believe future approaches to predicting 
noticeability can serve as the foundations of ambient information 
interfaces that automatically adapt virtual elements to be noticeable 
when needed and unobtrusive otherwise. 
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A Analysis 
We present the detailed results of our analysis of classification 
approaches (Table 3), time windows (Table 4), and feature combina-
tions (Table 5). 

Model AUC F1 Prec. R. Acc. 
Majority 0.5000 0.0000 0.0000 0.0000 0.5257 
Threshold 0.7519 0.7444 0.7262 0.7635 0.7513 
RF 0.7636 0.7251 0.7521 0.7472 0.7619 
Grad. Boost. 0.7835 0.7289 0.7659 0.7531 0.7721 
Naive Bayes 0.7083 0.6982 0.6392 0.8255 0.6955 
SVM 0.7569 0.7233 0.7217 0.7653 0.7583 
Logistic Reg. 0.7417 0.7134 0.7006 0.7584 0.7469 
NN 0.7134 0.6739 0.6780 0.7531 0.6914 
LSTM 0.7553 0.7149 0.7267 0.7412 0.7523 

Table 3: Performance comparison of classification ap-
proaches. 

B Machine Learning Tuning 
We evaluated the following learning-based classifiers (subsection 5.3) 
by applying them to our feature set and testing various hyper-
parameter values through a grid search: gradient boosting (30 es-
timators, max. depth=3, no prior feature selection), random for-
est (300 estimators, selected 5 best features prior to classification 
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Time AUC F1 Prec. R. Acc. 
0s to 10s 0.7662 0.7045 0.7526 0.7179 0.7573 
-10s to 20s 0.7789 0.7279 0.7552 0.7526 0.7708 
-30s to 40s 0.7197 0.6802 0.6865 0.7298 0.7098 
-10s to 0s 0.6431 0.5673 0.5890 0.6682 0.6017 
10s to 20s 0.6777 0.6242 0.6471 0.6778 0.6617 
-30s to 0s 0.6405 0.5926 0.6087 0.6897 0.5997 
10s to 40s 0.6768 0.6232 0.6331 0.7058 0.6463 
10s sequence 0.7889 0.7421 0.7816 0.7543 0.7820 
30s sequence 0.7600 0.7162 0.7432 0.7366 0.7582 

Table 4: Comparison of models implemented using features 
extracted from different time windows. 

Features AUC F1 Prec. R. Acc. 
Gaze𝑤 0.7577 0.7088 0.7326 0.7357 0.7505 
Gaze𝑔 0.5891 0.5329 0.5665 0.5687 0.5754 
Head𝑤 0.6279 0.5601 0.5996 0.6221 0.5905 
Head𝑔 0.5757 0.4933 0.5532 0.5156 0.5462 
Input 0.5298 0.4303 0.4893 0.4334 0.5330 

Activity 0.5033 0.3420 0.4297 0.4318 0.5130 
Engagement 0.6854 0.5935 0.6095 0.7585 0.6158 

Gaze𝑤 + Input + 
Activity 

0.7633 0.7119 0.7425 0.7375 0.7535 

Gaze𝑤 + 
Engagement 0.8116 0.7566 0.8097 0.7618 0.7984 

Gaze𝑤 + Gaze𝑔 + 
Head𝑔 

0.7480 0.6990 0.7236 0.7267 0.7373 

Head𝑤 + Input + 
Activity 

0.6405 0.5660 0.6016 0.6311 0.6067 

Head𝑤 + 
Engagement 0.7324 0.6654 0.7078 0.7528 0.6818 

Head𝑤 + Gaze𝑔 + 
Head𝑔 

0.6430 0.5899 0.6200 0.6537 0.6106 

Gaze𝑤 + Head𝑤 0.7551 0.7339 0.7422 0.7861 0.7361 

Table 5: Results using different feature combinations. Sub-
scripts 𝑤 and 𝑔 denote widget and general. 

based on the ANOVA F-value between the label and feature), SVM 
(kernel=RBF, C=1, gamma=0.03, using the 10 best features), Naive 
Bayes (using the 5 best features), logistic regression (using the 5 
best features), NN (solver=adam, alpha=0.0001, hidden size=128, 
layers=1, 5 best features), and LSTM (constructed from a 𝑁 × 3 
input matrix from 𝑁 features extracted during the following time 
intervals: 𝑡 = −30𝑠 to 𝑡 = 0𝑠 , 𝑡 = −20𝑠 to 𝑡 = 10𝑠 , and 𝑡 = 10𝑠 to 
𝑡 = 40𝑠 ; solver=adam, alpha=0.0001, hidden size=64, layers=1, pre-
selected 1 best feature). In all our machine learning experiments, 
we first imputed missing values by replacing them with a mean and 
standardizing features to comparable scales [103]. 

For our optimal threshold classifier, we exhaustively searched 
for a threshold that yielded the highest prediction performance on 
normalized statistical feature values computed from each window, 
uniformly sampling at an increment of 0.001. Our experiments 
showed that thresholding with the minimum gaze angle extracted 
from the time window 𝑡 = 0𝑠 to 𝑡 = 10𝑠 achieved the best results. 
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